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ABSTRACT
With the advances of web-of-things, human mobility, e.g., GPS

trajectories of vehicles, sharing bikes, and mobile devices, reflects

people’s travel patterns and preferences, which are especially cru-

cial for urban applications such as urban planning and business

location selection. However, collecting a large set of human mobil-

ity data is not easy because of the privacy and commercial concerns,

as well as the high cost to deploy sensors and a long time to collect

the data, especially in newly developed cities. Realizing this, in this

paper, based on the intuition that the human mobility is driven by

the mobility intentions reflected by the origin and destination (or

OD) features, as well as the preference to select the path between

them, we investigate the problem to generate mobility data for

a new target city, by transferring knowledge from mobility data

and multi-source data of the source cities. Our framework contains

three main stages: 1) mobility intention transfer, which learns a la-

tent unified mobility intention distribution across the source cities,

and transfers the model of the distribution to the target city; 2) OD
generation, which generates the OD pairs in the target city based

on the transferred mobility intention model, and 3) path generation,
which generates the paths for each OD pair, based on a utility model

learned from the real trajectory data in the source cities. Also, a

demo of our trajectory generator is publicly available online for

two city regions. Extensive experiment results over four regions in

China validate the effectiveness of the proposed solution. Besides,

an on-field case study is presented in a newly developed region, i.e.,

Xiongan, China. With the generated trajectories in the new city,

many trajectory mining techniques can be applied.
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Figure 1: Mobility Knowledge Transfer across Cities.

1 INTRODUCTION
Human mobility in an urban area is represented by the trajecto-

ries (e.g., in vehicles, bikes, and mobile devices). In advances in

web-of-things services like ride-hailing and sharing bikes in recent

years, the massive spatial trajectory data are collected, and many

exciting trajectory mining based techniques are emergin, e.g. urban

planning [2, 43], business location selection [22], and etc. For a

new city, government staffs and entrepreneurs can get constructive

suggestions from these techniques to make their decisions, but the

first thing is to acquire the human mobility data.

However, the acquisition of mobility data is not an easy task for

three reasons: 1) People’s privacy concerns. Some research works,

e.g. [3], show that people prefer not to share their location infor-

mation. 2) Commercial concerns. The high-quality mobility data are

collected and owned by only a few companies that provide popular

location-based service (LBS) applications. As a result, despite the

value of mobility data in business location selection, companies

of interest, e.g. the catering chain, can hardly get access to these

data. 3) Deployment expense. Even for the government, it is time-

consuming and costly to develop urban sensors and collect data in

large scale. It should also be noted that the urban applications, such

as urban planning and business site selection, are more meaningful

and beneficial, during the early development phase of an urban

region, as it is more costly to change the plan and site locations

when the area is already developed. Therefore, it is of good value

to infer the human mobility of a city.

There are many research works focus on modeling human mo-

bility or urban transfer learning. [36] proposes a Recurrent Neu-

ral Network based model to encode the trajectory and performs

a prediction task to get the next step of the trajectory. Besides,

[16, 17, 23, 28, 38, 44] investigate generating the trajectories of the

city using deep learning methods. However, all the above works

focus on the mobility of the same city. Moreover, the existing urban

∗
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transfer learning frameworks are designed to fill missing values [34]

or transfer spatial hotspots [25] to a new city, which are very dif-

ferent from our problem settings. The most similar work to ours

is [7], which generates the mobility of a new city when rare events

happen. Nevertheless, in this work, the large-scale mobility data in

normal days is known in the new city, which is also essentially a

quite different problem from ours. To the best of our knowledge,

our work is the first to generate spatial trajectories in new cities

without mobility data in the new cities.

In this paper, we specifically focus on generating the sharing

bikes’ trajectory data in a new city. Sharing bike service is a typical

use-case of web-of-things. The sharing bikes are equipped with

Bluetooth, GPS sensors and the network. The user gets access to the

bikes using the smartphone. The detailed trajectory of the whole

trip is recorded, which reflects the people’s short-range mobility.

Compared to the long-range high-speed commutes(e.g. taxi, bus and

metro trips), short-range trajectories are more important for both

the planning of bike lanes/sidewalks [2, 14] and location selection of

like chain stores and charging stations for electric automobiles[22],

since these applications are generally designed to serve the pedes-

trians or bike riders passing by.

In detail, we develop a mobility transfer system, which can gener-

ate trajectories for some target city by a unified mobility knowledge

model learned from the multi-source dataset from the source cities
that have mobility data. Note that in this work, we focus on the

spatial distribution of the trajectories over a long period of time (e.g.

3 months), which is also the key focus in other mobility researches.

Figure 1 gives an overview of the procedure, where the system

learns a unified mobility knowledge model based on the spatial

features and trajectories of the sources cities (i.e., Beijing and Hefei

at the top of the figure). After that, for a target city (i.e., Xiongan in

the example), the multi-source data is fed to the unified mobility

knowledge model to generate the trajectories in the area (as the

heatmap on the right).

(c) Path Selection

This
path

(b) Destination Selection

XXX
Plaza

(a) Intention Emerging  

Figure 2: The Three Mental Stages of a Trip.

The most important task here is to identify a unified transfer-

able model to reflect the trajectories in different cities. We realize

that there are three main steps to generate a trajectory, which is

demonstrated in Figure 2: 1) a mobility is driven by an intention,

e.g., shopping (Figure 2a); 2) a destination is selected to fulfill the in-

tention, e.g., a plaza (i.e., circle in Figure 2b); and 3) a path is selected

to connect the origin and destination (i.e., red line in Figure 2c).

As the conceptual procedure to generate the trajectory is uni-

versal for most of the users in any cities, it is possible to build a

universal and transferable model based on these intuitions. How-

ever, it is still a non-trivial task to generate trajectories in target

cites: 1) diversity of city styles. Due to the differences in lifestyles,

(a) Variance of Path Choices

Ori
Dst

(b) Preference to Shortest Path

Beijing
Chengdu
Hefei

(c) Preference to Straight Path

Beijing
Chengdu
Hefei

Figure 3: Path Preference Observations.

public transportation services, and more, the explicit travel inten-

tion distributions are different across cities; 2) enormous OD pair
space. It is very hard to build an end-to-end model that directly

generates OD pairs in the target city, as the space of OD pair candi-

dates is huge; 3) the diverse path preference. Even for the same OD

pair, people travel it with different paths, as people have different

preferences in choosing the paths. Figure 3a gives an example with

real-world trajectories, where three main paths are demonstrated

with different probability distributions.

We address the challenges in our system with three main tech-

niques: 1) mobility intention transfer. We use a domain generaliza-

tion technique [27] to learn an adaptation function to project the

features of OD pairs of the source cities to a latent space, where

the OD feature distributions of all cities (including the source and

target cities) are similar to each other. In this way, the differences

between cities are minimized and the model is generalized to trans-

fer mobility knowledge to the target city; 2) OD generation. This
module first generates the OD candidates in the target city by using

distance constraints to filter the unlikely OD pairs. Then, mobility

intention features are generated and the OD pairs with the most

similar latent features in the target city are returned; and 3) path
generation. As people usually choose paths that are similar to the

shortest path with less number of turns (demonstrated in Figure 3b

and c), and the preferences across cities are similar. A utility model

based method is proposed to learn the path selection preferences

and predict their choice probabilities.

In this paper, we use large scale trajectory data fromMobike
1
, as

its dock-less deployment of Mobikes effectively reflects of the short-

term mobility intention of people, and the trajectory generation in

new cities helps the company with its expansion strategy and con-

tributes to many urban applications, such as bike path planning [2]

and chain-shop location selection [22]. The main contributions of

the paper are summarized as follows:

• To our best knowledge, we provide the first attempt to generate

spatial trajectories in new cities, without any mobility data in the

new city. We focus on short-range mobility and generate trajectory

data of sharing bikes, which is valuable for many applications.

•We propose a novel mobility intention model to transfer mo-

bility knowledge. We also propose an origin-destination generation

model to a new city.

•We demonstrate that the path preferences are similar among

different cities. Based on this insight, we build a utility model to

generate the path based on the people’s path selection preferences.

•We validate the effectiveness of both OD pair generation and

path generation extensively using the massive trajectory data from

four regions in China. Moreover, a real-world case study is con-

ducted, which provides insights for urban planning and business.

1
https://en.wikipedia.org/wiki/Mobike
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2 OVERVIEW
2.1 Preliminaries

Definition 1. (Map-Matched Trajectory) Amap-matched tra-
jectory τ is defined as a road segment sequence τ = {r1 → r2 →
...→ rn }, where ri ∈ R, 1 ≤ i ≤ n.

In this paper, we focus on generating/transferring map-matched

trajectories, and IVMM algorithm [42] is used to perform the map

matching task over the raw GPS trajectories to the road network.

Definition 2. (OD Pair) An Origin-Destination pair ODi is a
road segment pair (ro,i , rd ,i ), which are the first and last road segment
of map-matched trajectory τi , respectively.

Definition 3. (Spatial Context Feature) Spatial context fea-
ture xi is a vector associated with an OD pair ODi . The features are
extracted from the multi-source data, including POI, transportation
stations and road networks.

Definition 4. (Mobility Intention Feature) Denoted as fi , it is
the hidden representation of spatial context feature xi , which represent
the mobility intentions in a latent space.

Definition 5. (Domain) A domain [30] consists of two com-
ponents: X and P(X ). X is the feature space. P(X ) is the marginal
probability distribution, and X = {x1, ..., xn }, xi ∈ X, 1 ≤ i ≤ n.

In this paper, a city is associated with a domain. X is the spa-

tial context feature space, and P(X ) is the spatial context feature
distribution of the trajectories in the city X .

2.2 Problem Definition
With the multi-source data from the source and target cities, given

only the trajectory data S(τ ) from the source cities, we want to

generate a set of map-matched trajectories in the target city, which

have the similar distribution to the ground truth trajectories T(τ )
in the target city.
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Intention based Generation

Road NetworkPOI Data
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Figure 4: An Overview of the System.

2.3 System Overview
Figure 4, with a conceptual procedure illustrated at the top part,

gives an overview of our system:

Stage I: Mobility Intention Transfer. This component generates

a unified mobility intention shared across cities. It performs three

tasks: 1) Spatial Context Feature Extraction, which extracts spatial

context features for trajectory OD pairs using the multi-source

data; 2) Domain Generalization, which projects the spatial context

features to the mobility intention space, where the distributions of

different source cities are similar; 3) Mobility Intention Modeling,
which models the unified mobility intention feature distribution

for generating mobility intention in the target city (detailed in

Section 3).

Stage II: OD Generation. This components takes the generated

mobility motion in adapted space and outputs the OD pair in the

target city. This component consists of three tasks: 1) OD Candidate
Enumeration, which extracts the possible OD pairs in the target

city; 2) Mobility Intention Mapping, which maps and indexes the

enumerated OD candidates to the unified mobility intention space.

3) Intention based Generation, which generates OD pairs in the target

city, based on the mobility intention model (detailed in Section 4).

Stage III: Path Generation. This component takes a generated

OD pair and generates road-granule paths connecting the OD pair

with probabilities, which is based on the model learned from the

real trajectory choices from the source cities. It consists of two

tasks: 1) Candidate Path Selection, which employs an algorithm

to effectively select candidate paths; 2) Path Probability Prediction,
which learns a model to predict the choice probability of each

candidate path (detailed in Section 5).

3 STAGE I: MOBILITY INTENTION TRANSFER
3.1 Overview
To transfer the mobility intentions to a target city, we need to find

an effective adaptation function to summarize the commonalities of

mobility intentions across different cities. Based on spatial context

features around users’ OD locations, we employ the domain gener-

alization to project these features from different cities to a latent

space, where the distributions of different cities become similar.

In this way, a generative model is built to summarize the mobility

intention distribution, which makes it possible to generate mobility

intentions in a target city.

(c) Domain Generalization (d) Mobility Intention Model(b) SC Feature Extraction(a) Trajectories of Source Cities
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Figure 5: An Illustration of Mobility Intention Transfer.

As a result, three steps are performed here, as demonstrated in

Figure 5: 1) spatial context feature extraction, 2) domain general-

ization, and 3) mobility intention modeling. The OD information

in the source cities is illustrated in Figure 5a, where the two cities

(marked in green and orange) have five OD pairs extracted from

the real trajectories. The first step extracts the spatial context fea-

tures of the OD pairs, as is shown in Figure 5b. Although there

are only two different types of mobility intentions, i.e., shopping

(as triangles) and going to work (as squares), the distributions of

spatial context features are different between the two cities, as the

layouts of the spatial context features are not the same between

cities. To address the above domain shift between cities, the domain

generalization step learns the adaptation function, which projects

the spatial context features to a mobility intention space, where the

feature distributions of the two cities are similar (e.g., in Figure 5c).
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Then, the unified mobility intention distribution is modeled (as the

shade areas in Figure 5d). Based on this model, in the OD genera-

tion stage, our system is able to generate ODs with similar mobility

intention distribution in a target city, which is detailed in Section 4.

3.2 Spatial Context Feature Extraction
The intention of human mobility is highly related to the spatial

context features near the OD locations. Thus, for each origin or

destination location, we extract three categories of spatial features

from multi-source data in a spatial range θδ (empirically set as 300

meters), including POI features, public transportation features, and

road network features.

POI feature. It includes the number of POIs in each categorywithin

the spatial range for both OD locations.

Public transportation features. It extracts two types of features:
1) the number of transport stations in different categories (e.g.,

bus stops or subway stations), and 2) the distances to the nearest

different transport stations.

Road network features. This category of features involves the

following information: 1) the length of the shortest path between

OD; 2) the number of adjacent roads connected to the location;

3) road level at the location; and 4) the graph eccentricity of the

location in the road network.

Finally, the spatial context features of both the origin and desti-

nation are composed together to derive the spatial context features

of an OD pair.

3.3 Domain Generalization
In this step, we train an adaptation function GD (·) that projects

the spatial context features to mobility intention space, where the

distribution difference across multiple source cities is minimized.

In this way, the trained adaptation function can be applied directly

to the unseen target domain. We also validate the effectiveness of

domain generalization with real-world data from Mobike.

There has been a large body of algorithms proposed to minimize

the distribution difference of two domains e.g., [9–11]. In this work,

we employ Transfer Component Analysis (TCA) [29], which eases

the implementation and training yet provides good scalability. TCA

essentially learns a set of transfer components in Reproducing Ker-

nel Hilbert Space (RKHS) by minimizing the Maximum Mean Dis-

crepancy (MMD) [4] between the datasets from different domains.

The algorithm is performed mainly via eigen value decomposition

and thus can be parallelized. The learned transfer components C
span a subspace, where the distributions of different domains are

close to each other. Note that, TCA is applicable for more than two

source cities by extending MMD for multiple domains, e.g. [11].

However, in the following examples, we only use two source cities

for brevity.

With the transfer components C learned from two source city

data XS1 ,XS2 with the kernel function K , the adaptation function

for spatial intention feature x is straightforward:

GD (x) = K(x,X⊤S ) · C, (1)

where X⊤S is the transpose of the concatenated matrix from the

source cities, i.e.,XS1 ,XS2 . As a result, given a spatial context feature

sample xi , the mobility intention feature fi is:

fi = GD (xi ). (2)

nMMD2: BJ-HF=17.55; BJ-CD=13.31; HF-CD=15.84

Before Adaptation: t-SNE Top2 Dim
BJ: Src1
HF: Src2
CD: Tar

nMMD2: BJ-HF=1.41; BJ-CD=3.94; HF-CD=4.49

After Adaptation: t-SNE Top2 Dim
BJ: Src1
HF: Src2
CD: Tar

Figure 6: The Effect of Domain Generalization.

Figure 6 shows the result of domain generalization using TCA on

our real data set, where Beijing and Hefei are used as source cities,

and Chengdu is used as the target city. We train the adaptation

function using only the spatial context features of ODs from source
cities, i.e. Beijing and Hefei, and then we apply the trained function

to all of the three cities. Besides, for both spatial context space and

mobility intention space, the MMD values (detailed in Equation 8)

of all different city pairs are computed. Figure 6(a) is a visualization

of the original spatial context feature distributions of the three

cities using t-SNE [26]. Figure 6(b) shows the distributions after

the adaptation function is applied. It is clear that after applying the

adaptation function, not only the domain shift between the source

cities is reduced (withn·MMD2
decreasing from 17.55 to1.41, where

n is the total number of OD pairs), but also the mobility intention

distribution of the target city becomes similar to the source cities

(with nMMD2
to Beijing and Hefei dropping from 13.31 and 15.84

to 3.94 and 4.49 respectively). As a result, the effectiveness of our

idea to adopt domain generalization is validated.

Analysis. The ultimate goal is to acquire the mobility intention fea-

tures of the target city, Chengdu. Since the domain shift is reduced

obviously after leveraging the adaption function, it is possible to

“simulate” the target city Chengdu in mobility intention space (blue

ones in Figure 6b) using the known features of Beijing and Hefei

(green and orange ones).

Note that the adaptation function does not guarantee the cluster-

ing of features with similar explicit mobility semantics (e.g. shop-

ping or commuting), but the latent semantics instead.

3.4 Mobility Intention Modeling
Since the mobility intention features from the source cities can be

generalize to the target city(as is analyzed in Section 3.3), in this

step, we build a model that can generate these features and apply

it to the target city.

(a) Without Synthesis (b) Synthesis with k=3

f0 α
ft

Desired Generated Desired Generated

 

Figure 7: Data Synthesis for Lack of Data Problem.
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A naïve generation strategy is to directly sample from the mobil-

ity intention features of the source cities. However, given a small

dataset, this strategy results in the lack of generalization ability.

Figure 7(a) gives a demonstration, where the feature data (depicted

in black dots) is under-representative for the mobility intention

distribution of the city. To overcome this problem, we propose a

data synthesis based generation strategy by kNN query and inter-

polation, which is similar to SMOTE [5].

Algorithm 1Mobility Intention Generation Algorithm

Input: S(τ ), trajectory data from source cities, and the kernel function

K (·, ·).
Output: Generated mobility intention feature

ˆf .
// Spatial ContextFeature Extraction

1: S(x ) ← Spatial Context Features of OD pairs in S(τ )
// Domain Generalization

2: Get GD (·) by Equation 1, with C ← TCA(K , S(x ))
3: S(f) ← {GD (xi ) |xi ∈ S(x )}

// Intention Generation
4: f0 ← RandomChoice(S(f))
5: {fn

1
, ..., fnk } ← S(f).kNN(f0)

6: ft ← RandomChoice({fn
1
, ..., fnk })

7: Generate a random number α ∈ [0, 1]
8:

ˆf ← (1 − α ) · f0 + α · ft
9: return

ˆf

Algorithm. Algorithm 1 provides the pseudo-code. With the mo-

bility intention features of the source cities S(f) calculated(Line
1-3), it first randomly selects an intention feature from the source

cities as f0(Line 4). Then a kNN query is employed, and a neighbor

point ft is selected randomly from the result(Line 5-6). After that,

it synthesizes a feature point
ˆf by random interpolation between f0

and ft (Line 7-8), and ˆf is the generated intention.

Figure 7b demonstrates an example with k = 3, where the red

star is the synthesized data
ˆf between f0 and its neighbor ft with

offset ratio α . As a result, we can improve the generalization ability

to the desired distribution using a relatively small set of data points

by data synthesis. The effectiveness is detailed in Figure 11c of

Section 6.3.

4 STAGE II: OD PAIR GENERATION
In this section, we generate OD pairs in the target city based on

the mobility intention model transferred from source cities.

Intuition. The idea is simple: given a generated mobility intention

feature, we search for the OD pair in the target city that has the

most similar mobility intention to it.

As a result, generation of OD pairs can be decomposed into three

steps, as demonstrated in Figure 8: 1) OD candidate enumeration,
which enumerates all possible OD pairs in the target city, i.e., the

arrows denoted as {1, 2} in Figure 8a. 2) Mobility intention map-
ping, which maps the enumerated OD candidates to the mobility

intention space (as in Figure 8b). And 3) Intention based generation,
which finds the most similar OD candidate in mobility intention

space, which is shown in Figure 8c, where the mobility intention

model is transferred from the source cities (i.e., shade areas). Given

the generated mobility intention
ˆf , we find {1} the most similar

OD pair as the generation result.

(c) Generation

Most
Similar 

OD1
1

2

2

Generated
Mobility
Intention

Mobility 
Intention Space

(a) OD Candidates

1

B
u
s

2
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1
1

2

2
Mobility 

Intention Space

 

Figure 8: An Illustration of OD Generation.

4.1 OD Candidate Enumeration
We enumerate all candidate OD pairs in the target city. Instead of

the brute-force enumeration, which is O(n2r ), nr is the size of road
segments, we empirically select the OD pairs with shortest path

length within 6.0km, as the most of the bike trips (91.7%) are within

6.0km [2]. This empirical trick can help decrease the number of

OD candidates to nr · nσ , where nσ is the average number of roads

within 6.0km of a road, valuing around 2000 depending on the city

regions.

4.2 OD Candidate Mapping
To keep the consistency of the target city OD pairs and the trans-

ferred mobility intention model, we map all enumerated OD candi-

dates to the same mobility intention space. As a result, we apply

the same spatial context feature extraction scheme described in

Section 3.2, along with the adaptation functionGD (·) in Equation 1

trained by the source cities to convert the spatial context features

to mobility intention space, denoted as Tc (f).

4.3 Intention based Generation
With the intention features of OD candidates, we draw

ˆf from the

transferred mobility intention model, and find the OD candidate

with the most similar features. Since the mobility intention space

is a low dimensional latent space, we simply use the inverse of the

Euclidean distance as the similarity metric, i.e. for
ˆf and a candidate

fc , the similarity is Sim(ˆf, fc ) = 1/∥ˆf − fc ∥2. Then, the searching
procedure is equivalent to finding the nearest neighbor, i.e. for the

given intention
ˆf , the generated OD pair ÔD is

ÔD = ODc

s.t.

c = argmin

0≤i< |Tc (f) |
∥ˆf − fi ∥2. (3)

To speed up the search, we build a KD-Tree index in mobility in-

tention space for the mapped candidates.

5 STAGE III: PATH GENERATION
5.1 Overview
In this section, we describe the procedure that generates the paths

between the OD pairs in the target city. Generating paths based on

given OD pairs is a non-trivial task for the following two reasons:

1) there are many possible paths between the OD in a road network,

but only a limited number of paths are traveled frequently; and
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2) the distributions between the candidate paths are very different,

which is affected by the features of the paths.
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Figure 9: An Illustration of Path Generation.

To this end, we propose a two-step path generation model,

demonstrated in Figure 9: 1) Candidate Path Selection, which cal-

culatesm candidate paths based on a given OD pair; and 2) Path
Probability Prediction, which predicts the choice probability distri-

bution among all candidate paths. Finally, the path is generated

from the candidates with respect to their choice probabilities.

(c) Coverage v.s. and Threshold (d) Coverage v.s. Cities in ECDF

Probability 0.1
value 0.7

(a) Naïve -SP

(b) With Overlap Threshold

Ori
Dst

Dst
Ori

 

Figure 10: Intuition and Results Our Path Selection.

5.2 Candidate Path Selection
Main idea. In this step,m candidate paths are selected between

the given OD pairs. A straightforward way is to compute the topm
shortest paths, e.g., using Yen’s algorithm [41]. As demonstrated

in Figure 3b, over 70% of the bike trip lengths are very close to

the length of the shortest path. However, in the road network, the

top-m shortest paths are very similar to each other, as shown in

Figure 10a, where the top 5 shortest paths (i.e., in red) only have

some minor differences at the beginning and can only cover a very

limited portion of all real trajectories (i.e., illustrated as white lines).

To this end, we introduce an overlap constraint to the path

generation algorithm to filter the overlapped candidates. In our

implementation, weighted Jaccard(wJCD) value is employed, as it

is a common metric to evaluate the degree of overlapping between

two sequences [6, 12]. The formula is as follows:

wJCD(τ1, τ2) =
(τ1 ∩ τ2).len

(τ1 ∪ τ2).len
=

(τ1 ∩ τ2).len

τ1.len + τ2.len − (τ1 ∩ τ2).len
,

(4)

where (τ1 ∩ τ2).len is the total length of the overlapped road seg-

ments between the two paths. For example, if two paths are with

length 10km and the length of their overlapping road segments is

8km, thewJCD value is 8km/(10+ 10− 8)km = 0.667. In this paper,

paths withwJCD larger than 0.7 are considered as well-overlapped.

Algorithm. Algorithm 2 shows the pseudo-code of the path se-

lection. First, we employ Yen’s algorithm [41], which iteratively

Algorithm 2 Overlap Threshold based Candidate Path Selection

Input: Origin and destination roads rO and rD , road network Grn ,

overlap threshold θΩ , and the number of candidate pathsm.

Output: The list of candidate paths Tcand .
1: Tcand ← ∅

// Yen’s shortest paths enumerator.
2: yen ← Yen(Grn , rO , rD )
3: while |Tcand | < m and yen .hasNext () do
4: τ̂ ← yen .next ()
5: max JCD ← maxτi ∈Tcand w JCD(τ̂ , τi )
6: if max JCD < θΩ then
7: Append τ̂ to Tcand
8: return Tcand

generates paths between OD ordered by the path lengths (Line 2).

For each newly generated path τ̂ , we compute its wJCD to each

candidate path in Tcand (Line 4-5). If allwJCD values are less than

θΩ , the newly generated path τ̂ is inserted in the candidate path set

Tcand (Line 6-7). The algorithm terminates when: 1) up tom paths

are selected; or 2) there are no more loopless paths between OD.

Example. Figure 10b gives an example of the path generation re-

sults using the overlap threshold based candidate path selection

algorithm, where the red lines are the generated top 3 candidate

paths. The generated paths cover much more real bike trips com-

paring to the naïve top-m Shortest Path approach in Figure 10a.

Analysis. Figure 10c shows the path coverage performance (i.e.,

recall ratio of the real topm traveled paths) comparison between

Overlap Threshold based Candidate Path Selection (with different

θΩ settings) and the naïve shortest m path algorithm, using the

real bike trips in Beijing. From the figure, we can notice that our

algorithm outperforms the naïve top-m SP approach.

We also validate the effectiveness of this algorithm in different

cities, e.g., Chengdu and Hefei. Under the same parameter settings

thatm = 5 and θΩ = 0.7, as demonstrated in Figure 10d, we get

similar performance in Beijing, Chengdu and Hefei, i.e., over 90

percents of trajectories can be matched to one of them paths.

Moreover, it is obvious that a largerm leads to better coverage.

However, the computational cost of a largerm increases. The trade-

off between the coverage and efficiency will be demonstrated in

experiments.

5.3 Path Probability Prediction
Estimating the choice probability distribution of the candidate paths

is another important task in path generation. As we demonstrated in

the introduction, Figure 3b and c, the users’ preference in choosing

the path between an OD pair depends on the features of the paths,

e.g., total length, number of turns, and directions.

To this end, we employ a utility model [31] to predict the choice

probability distribution of the candidate paths. The utility model

gives each path a utility score and uses So f tmax function to calcu-

late the probabilities. The path probability prediction component of

Figure 9 illustrates the procedure, where there are three candidate

paths selected, i.e. {τ̂1, τ̂2, τ̂3}. We first extract features for each path

represented as three vectors {p1, p2, p3}, and then through a utility
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model, the probabilities for each candidate path is predicted. In this

section, we detail the two steps.

Path Feature Extraction.We extract topological features to repre-

sent each candidate path τ̂ involving: the number of road segments,

the length of the path, the number of left and right turns, the num-

ber of U-turns, the traversing frequency of each road level, and the

number of wrong road transits (ri → ri+1 is considered wrong if

ri+1 is not the way to achieve the shortest path from ri ).

Model Training. The main intuition of the utility model is to find

a utility functionGu for paths that fitting the training data. Figure 9

details the supervised utility model training process. Each training

example is the features {p1, ..., pm } and ground truth probabilities

{y1, ...,ym } of them candidate paths associated with an OD.

During the training phase, the model first computes the utility

score by function Gu , and then applies the So f tmax function to

convert scores to probabilities. Finally, the training loss is com-

puted between the predicted and the ground truth probabilities. We

use Cross-Entropy in the loss function. Therefore, the formal loss

function for a training example is formulated as

Loss(y, ŷ) = CrossEntropy(y, ŷ); (5)

ŷi =
exp(Gu (pi ))∑
m exp(Gu (pm ))

.

As based on our observations, the path selection preferences of

people in different cities are similar, in this paper, we directly apply

the model learned from the trajectories of the source cities, to the

target city.

Implementation. We set two Fully-Connected neural network

layers as utility function Gu . As a result, this training process can

be easily converted to the popular Stochastic Gradient Descent

optimization form. In this work, we adopt Adam as the optimizer,

with a learning rate of 0.01.

Ground Truth. In this supervised utility model training process,

for each OD training example, we first need to compute the ground

truth probability of the candidate paths associated with the OD

pair. However, since the trajectories are less likely to exactly match

the candidate paths, the probability cannot be computed simply

by counting the frequency of trips on each path. Realizing this, in

this work, we decide to simulate the ground truth by matching

each trajectory to the most similar candidate path, and then the

frequency of each path is alternated as the number of matches,

i.e. the ground truth visiting frequency Di of candidate path τ̂i is
estimated as

Di = |{τj |τ̂i = argmax

τ̂l
wJCD(τj , τ̂l )}|. (6)

Here τj ’s are trajectories between the given OD. As a result, the
estimated choice probability ground truth for path τ̂i is derived:

yi =
Di∑
j D j
. (7)

In addition, to guarantee the quality of the training data, only the

OD pairs with more than 30 trajectories are used as training data.

6 EXPERIMENT
In this section, we first describe the experimental datasets, evalu-

ation metrics and the baselines approaches. Then, we present the

Table 1: Details of the Datasets

Chaoyang Haidian Chengdu Hefei
Region Size 18.8km2

16.1km2
14.5km2

15.3km2

# of Trajectories 128,546 123,188 127,577 128,733

# of Roads 3,180 3,252 1,668 1,755

# of POIs 26,030 23,751 23,236 8,044

# of Stations 1,905 1,323 1,003 321

evaluation results with different settings. Finally, an on-field case

study is conducted.

6.1 Data Descriptions
Mobike Trajectories. We collected a portion of bike trajecto-

ries
2
in three months (from 01/04/2018 to 01/07/2018) from four

cities/regions in China: (i) Chaoyang district of Beijing, (ii) Haidian

district of Beijing, (iii) Chengdu city and (iv) Hefei city. All these

regions have a large number of Mobike usage.

Multi-source Data. The multi-source datasets include POI data,

transport station data and Road network data. Details of these

datasets are summarized in Table 1.

6.2 Evaluation Metrics
Due to the enormous space of the map-matched trajectory, directly

evaluating the distribution difference of two trajectory set is com-

putationally unfeasible, which is also discussed in [28]. To this end,

many works use spatial distribution of GPS points to evaluate the

effectiveness of generation results [23, 28]. We argue that it is not

appropriate to simply compare the spatial distribution of separate

trajectory points of the generated and ground truth data, since dif-

ferent trajectory sets can result in completely the same trajectory

point distribution. Realizing this, we divide the evaluation by two

the stages separately, i.e. the evaluation of OD generation and the

evaluation of path generation with fixed OD:
OD generation. The ground truth and the generated OD pairs are

represented as two sets A and Â, and each element contains 4

entries [latO , lnдO , latD , lnдD ], which are the latitudes and longi-

tudes of the OD pair. We use n ·MMD2
to evaluate the distribution

difference between A and Â, where n is the number of OD pairs

in A and Â. MMD [4] essentially computes the distance between

the centroids of two distributions in Reproducing Kernel Hilbert

Space (RKHS). Formally, for an RKHS H with kernel function ϕ,
MMD is calculated as follows:

MMD(A, Â) =







 1

|A|

∑
ai ∈A

ϕ(ai ) −
1

|Â |

∑
âi ∈Â

ϕ(âi )








H

. (8)

Path generation with Fixed OD. We use KL Divergence to eval-

uate the performance of path generation:

KLD(Pдt , Pдen ) = −
∑

ri ∈Rτ

Pдt (ri ) · log
Pдen (ri )

Pдt (ri )
, (9)

2
The whole dataset is not used due to our data confidential agreement.
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Figure 11: Experiments on OD generation and path generation.

where Pдt (ri ) and Pдen (ri ) are the probabilities to travel the road
ri with the ground truth and the generated trajectories, respec-

tively. Laplace smoothing is used to avoid zero probabilities in the

computation of KL Divergence. Rτ is the set of all road segments.

6.3 OD Generation
In this section, we present the effectiveness of OD generation under

different settings. We set the source cities as Chaoyang and Hefei,

the target city as Chengdu, the synthesis parameter k = 5 and

the number of training data as 5000. The entire trajectory data is

used for evaluation, which is divided equally into four sets, and the

average MMD value is calculated to avoid memory overload. The

evaluation repeats three times to overcome the generation variance.

Source-target combinations.We enumerate the combination of

source and target cities to see the effectiveness of our adaption

function. Figure 11a shows the performance of our solution with

and without adaption function. It is clear from the figure that:

1) the effectiveness of OD generation improves when the adaption

function is used, which validates our idea to mapping the features in

a unified mobility intention space. 2) The OD transfer performance

from Chengdu-Hefei to Chaoyang is relatively low. This is because

Chaoyang district, as a part of the capital city, Beijing, is different

from the two other small cities. As a result, it is relatively more

challenging to transfer mobility knowledge from small cities to

big cities. Our congestion here is that the big cities contain more

diverse regions that can cover more spatial context features in small

cities.

Different target cities.We keep the source cities Chaoyang-Hefei

invariant, and evaluate the performances on different cities, i.e.,

Chaoyang, Hefei, Haidian, and Chengdu. Results are presented

in Figure 11b, where we have the following observations: 1) self-

validations to Chaoyang and Hefei show good performances, which

implies the representation ability of mobility intention. 2) the trans-

fer to Haidian is relatively better than Hefei because Haidian and

Chaoyang are similar, as both of them are in Beijing.

Different data sizes. We also study the OD generation perfor-

mance under different numbers of trajectories for the training

phase. Moreover, we evaluate the effectiveness of the proposed

data synthesis technique described in Section 3.4 by setting dif-

ferent k values. Figure 11c shows two main observations: 1) the

nMMD2
decreases with the increase of data size, which implies

the necessity of learning mobility knowledge from the large-scale

trajectory data; and 2) by introducing data synthesis, the number

of trajectories required in generation is reduced.

6.4 Path Generation with Fixed OD
In this section, we describe the experimental results of path gener-

ation. We compare our solution with two baselines.

•mSP. It chooses the top-m paths between OD as the path can-

didates and learns the utility model from the source cities.

• Ours-T2T. This method uses our Algorithm 2, but the model

directly applies the path probability prediction model learned from

the target city and used to the same city (target city) directly.

Source-target combinations.We enumerate source-target combi-

nations and set candidate paths number asm = 5. Figure 11d shows

the results, where we have two important observations: 1) our solu-

tion outperforms the naïve topm shortest path solution (i.e.,mSP),
which implies the necessity of introducing the overlap threshold to

select candidate paths; and 2) the model trained with the trajecto-

ries in the same city (i.e., Ours-T2T ) does not make a note-worthy

improvement, which validates our intuition that people in different

cities have similar preference to choose paths. Therefore, we do not

need to build different path preference models based on different

source/target cities.

Differentm values. We study the trade-off between effectiveness

and execution time by settings different candidate path numbers

m from 1 to 9. The bars in Figure 11e shows the effectiveness (i.e.,

KL divergence), and the line shows the average time cost for gener-

ating one trajectory in milliseconds. From the figure, we can see

that: 1) with the increase ofm, the path generation performance

improves, as more candidate paths guarantee more comprehensive

coverage. However, the effectiveness withm = 7 andm = 9 im-

prove slightly overm = 5, which implies the most of users only

select up to 5 different paths for an OD pair; and 2) the execution

time increases whenm gets larger. Whenm = 9, it takes nearly

600 milliseconds to generate one trajectory in average. As a result,

generating 1,000 trajectories takes around 10 minutes, which be-

comes the efficiency bottleneck in our system (generating 1,000

ODs takes only 300 milliseconds). As a result, we setm = 5 as the

default value to achieve the best trade-off between accuracy and

efficiency.

6.5 A Demo of the Generated Trajectory
Heatmap

In addition to the quantified evaluations described in Section 6.3

and Section 6.4, we also visualize the heatmap distributions of the

trajectories between our generation results and the ground truth.

Figure 13 demonstrates the results for the city of Chaoyang and

Hefei. From the figure, we can observe that, for both of the cases,

the generated spatial distribution of the trajectories are very similar

to the ground truth distribution.
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Figure 12: On-field Case Studies in XiongAn.

6.6 On-field Case Studies in XiongAn
We conduct a real-world case study in XiongAn, a promising city

attracting strong attention from both the entrepreneurs and govern-

ment staffs in China. We generate the trajectories using our system.

We first analyze the popular OD pairs, and then visualize the gener-

ated trajectories using heatmap. Figure 12c gives the heatmap and

POI distribution of this city. According to our generated ODs, we

have two observations: 1) finding 1: many inter-trips in the down-
town area. A set of popular OD pairs likeOD1 in the figure appears

in the downtown area with many POIs around; 2) finding 2: many
trips between the south area and downtown. There also exists a pop-

ular travel OD from the southwest to the downtown, i.e. OD2, as a

new residential area is built in the southwest.

When we arrived there, we found only a few people in the rural

area, e.g. Aosen St. in Figure 12a, which is consistent with our

generation results. On the other side, there is more crowd flow in

Jinrong St. and Jintai Rd (i.e., illustrated Figure 12d and e), which

are the main roads for inter-trips connecting the downtown area

(i.e., consistent with finding 1). Moreover, we find that many people

are traveling in Yonggui St (Figure 12b). The road connects the

southwest area and the downtown, which validates our finding2.
From the generated heatmap, we can also get the following

insights for urban applications: 1) business site selection. As Yonggui
St. is a street with plenty of traveling people, but with a limited

number of POIs. Thus, it is a good place to set up new businesses,

like restaurants and stores; 2) government planning 1. As shown in

Figure 12e, non-motor vehicles have to ride on the center of the

Jintai Rd., as there are no bike lanes. Thus, our suggestion here is

to build bike lanes along the road; and 3) government planning 2. As
shown in Figure 12d, there are many vendor booths along the road,

which attracts pedestrians. Our suggestion is to construct more

Generated Ground Truth

HefeiChaoyang

Generated Ground Truth

 

Figure 13: The Generated Heatmap in Chaoyang and Hefei.

shop buildings nearby to not only improve the shopping experience,

but also ease the congestion.

7 DEMO SYSTEM
A demo of our bike trajectory generation system is publicly avail-

able online [1], with mobility intention model trained using tra-

jectory datat of Chengdu and Hefei. Figure 14 presents the system

interface. The system allows users to generate trajectories, pre-

view the heatmap, and show the details of generated trajectories. It

contains the following components:

Parameter View Result View

Map View

 

 

Figure 14: System Interface.

Parameter View. The user selects an area for generation

(Chaoyang District or Xiongan in this demo), the number of trajecto-

ries, and the path generation algorithm to get generated trajectories.

The user can also download the generated trajectories.

Result View. In this view, a table shows the details of each trajec-

tory: the trajectory ID, the OD locations and its total length. The

user can have also a view of each trajecotry.

MapView. The upper right section is the map view, which displays

the trajectory heatmap and the detailed trajectories (polylines in

blue).
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8 RELATEDWORK
In this section, we summarize the four most related areas: 1) urban

computing, 2) transfer learning, 3) humanmobility and 4) Trajectory

Recovering.

Urban Computing. Urban computing [45] aims to address prob-

lems in the city. On one hand, many works study the mobility in the

city, e.g. [40] predicts the taxi demand to enable smart scheduling.

[35, 46] try to understand human mobility patterns from check-ins.

[13] studies the effect of illegal parking events on sharing bike tra-

jectory distribution passing and proposes to detect illegal vehicle

parkings, and [24] proposes an online trajectory anomaly detec-

tion algorithm. On the other hand, trajectory data management

systems [20, 21, 32] are built to improve the efficiency of urban

trajectory mining applications. In our problem, we transfer the

human mobility patterns across cities.

Transfer Learning.Many works solve urban problems by apply-

ing traditional transfer learning assuming the target domain is

available. E.g. [34] tackles the data insufficiency problem. [19] pre-

dicts the Home-to-Work time for families in a new city based on

survey data of families in both source and target cities. On the other

hand, the traditional unseen target domain problems, e.g. [9, 10, 39],

uses domain generalization technique [27] to address the problem

of label data unavailability. The closest work to us is the transfer of

sharing bike stacking hot spots, which uses multi-source data to

predict the density of sharing bikes for each road [25]. However,

it only transfers the spatial hotspots of bike stacking, while we

transfer not only the OD pairs, but also the paths between them.

HumanMobility.Human mobility modeling tries to learn the mo-

bility of people and reproduce the real movements. [17] summarizes

the records of cellular networks in distributions, and [44] proposes

a framework to learn mobility knowledge from multi-source mo-

bility data. Some works focus on the mobility prediction task, e.g.

[38]. Generative models are also used for trajectory generation,

e.g. [8, 16, 23, 28]. All the above works only study the mobility

modeling technique of a single city, instead of the mobility com-

monalities across the cities. Note that [7] also generates trajectories

in new cities. However, it uses large scale trajectories in the new

city to generate abnormal trajectories.
Trajectory Recovering. Trajectory recovering studies the prob-

lem of recovering the entire route between two locations in a tra-

jectory. E.g. [18, 42] use empirical ways for recovering, and [37]

proposes a data-driven and probabilistic approach that overcomes

the data sparsity problem. Recently, computer vision based tech-

niques are applied to recover trajectories [33], which recovers the

maps from GPS points to aid trajectory recovery in areas without

road map. These works mainly focus on recovering only a single

route that matches the sparse trajectory. The modeling of route

choice behavior, e.g. [31], focuses on the effects of choice set compo-

sition in route choice modeling, and [15] builds a choice model for

San Francisco using GPS trajectories. However, none of the existing

works here address our entire problem, and they did not provide

studies on path preferences across different cities.

9 FUTURE RESEARCH OPPORTUNITIES: AN
OUTLOOK

In this work, we focus on transferring the spatial (i.e. temporal-

irrelevant) distribution of short-range trajectories. The results help

analyze not only the hot spots of pedestrians, but also the popular

routes over the target city region. However, the temporal distribu-

tion and the long-range mobility remains unsolved.

Temporally dynamic distribution. For a new city, inferring the

dynamic mobility distribution, i.e., the mobility distribution of a

given time window, is the key to precise location selection and

urban management. However, this task is very challenging: 1) The

cities vary in life styles. E.g., big cities have obvious rush-hour

patterns compared to small towns. 2) data sparsity. The mobility

data is separated into the time windows, making it difficult to

accumulate sufficient data, especially in late-night.

Long-range Mobility. Long-range mobility over the city, usually

more than 6km, plays an important role in public transportation ser-

vices like road network planning and bus/subway route planning.

It should be noted that, for long-range mobility, OD distribution

is much more important than the path preference: the routes can

be optimized by the government under the analysis of OD distri-

bution. With both long-range and short-range mobility transfer,

the mobility of the whole city can be recovered hierarchically. I.e.

the inter-region long-term transits and inner-region short-term

trajectories.

10 CONCLUSION
In this paper, we make the first attempt to study human mobility

generation for a new city, by transferring the “mobility knowledge”.

The solution framework first transfers mobility intention from the

source cities to the target city, to generate the OD pairs. Then, by

analyzing people’s path preference in different cities, we extract

shared preference patterns, to generate the paths to connect each

OD pair. Extensive experiment results in four regions in China are

provided. In the evaluation of OD generation, our proposed method

outperforms the baseline obviously, with nMMD2
decreasing at

least 75%. When in the path generation, we observe that the path

preferences across cities are very similar. Finally, a real-world case

study is conducted in XiongAn, which provides us with many

insights for urban applications, e.g., store location selection and

urban planning.
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