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ABSTRACT 

Bike-sharing systems are widely deployed in many major cities, 

providing a convenient transportation mode for citizens’ comm-

utes. As the rents/returns of bikes at different stations in different 

periods are unbalanced, the bikes in a system need to be rebalanced 

frequently. Real-time monitoring cannot tackle this problem well 

as it takes too much time to reallocate the bikes after an imbalance 

has occurred. In this paper, we propose a hierarchical prediction 

model to predict the number of bikes that will be rent from/returned 

to each station cluster in a future period so that reallocation can be 

executed in advance. We first propose a bipartite clustering algori-

thm to cluster bike stations into groups, formulating a two-level 

hierarchy of stations. The total number of bikes that will be rent in 

a city is predicted by a Gradient Boosting Regression Tree (GBRT). 

Then a multi-similarity-based inference model is proposed to predi-

ct the rent proportion across clusters and the inter-cluster transition, 

based on which the number of bikes rent from/ returned to each 

cluster can be easily inferred. We evaluate our model on two bike-

sharing systems in New York City (NYC) and Washington D.C. 

(D.C.) respectively, confirming our model’s advantage beyond 

baseline approaches (a 0.03 reduction rate on error), especially for 

anomalous periods (a 0.18/0.23 reduction rate on error). 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining, spatial database and GIS;  
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1. INTRODUCTION 
Bike-sharing systems are widely deployed in many major cities, 

like New York, Paris and Beijing, providing a convenient transpor-

tation mode for people’s commutes. A user can rent (i.e. check out) 

a bike at a station near their origin and return (i.e. check in) it to a 

station close to their destination. Users are required to swipe an 

RFID card when checking out/in a bike. A record, consisting of the 

bike ID, timestamp and station ID, is generated for each card swipe.  

Bike-sharing systems face challenges in bike rebalance between 

stations. Intrinsically, bike usage are skewed, changing over time 

and locations. Consequently, some stations may be jammed without 

enough docks for future returned bikes while some lack available 

bikes for interested users. Monitoring the current number of bikes 

at each station cannot tackle the challenge thoroughly, as it is too 

late to reallocate bikes after an imbalance has occurred. 

To address this issue, we predict the number of bikes that will be 

checked out from (i.e. check-out) and checked in to (i.e. check-in) 

each station in a bike-sharing system during a future period, based 

on historical check-out/in data as well as meteorology data. The 

predictions can help to operate a bike-sharing system more effici-

ently, improving resource utilization. To achieve this goal is very 

challenging as bike traffic is impacted by multiple complex factors, 

such as the time of day, day of the week, meteorology, events, and 

the correlation between stations.  

1) Meteorology: More people may check out/in a bike on a sunny 

day than on a rainy day. This phenomenon also exists between a 

cool day and a warm day; same with days of different levels of 

wind. However, some categories of weather, e.g. rainy, occur rar-

ely, while other categories like sunny may be very common. In 

addition, some temperature & wind speed scenarios have never 

happened historically, but may happen in the future, e.g.(11.7 °C,
4.6 mph) for NYC. These lead to an unbalanced distribution of 

data if partitioned by meteorology. Traditional machine learning 

models are trained to fit the majority of observations, thus would 

scarify the models’ accuracy under minor conditions. However, 

being able to predict traffic under rare conditions, e.g. rainy hours, 

is as important as that under ordinary ones, e.g. sunny hours.  

2) The correlation between stations: First, the bike traffic of nearby 

stations affect each other. For instance, when a station is full of 

bikes, users have to check in their bikes at nearby stations. 

Likewise, when a station is running out of bikes, people turn to 

nearby stations for checking out. Second, when the check-out in a 

(origin) region increases tremendously for some reason, e.g. an 

unusual event, check-in at other (destination) regions will be 

affected significantly beyond common patterns. As a result, the 

bike traffic at an individual station may change irregularly and the 

bike transition between stations may vary tremendously. 

To tackle these challenges, we propose a hierarchical prediction 

model, which is comprised of five major components: 1) a Bipartite 

Station Clustering algorithm to cluster individual stations accord-

ing to their geographical locations and historical transition patterns 

(explained in 3.1.2); 2) an Entire Traffic Prediction model to predict 

the total check-out of the whole city based on time and meteorology 

features; 3) a Check-out Proportion Prediction model to predict the 

check-out proportion (among total check-out) across station clus-

ters; 4) an Inter-Cluster Transition Prediction model to predict the 

dynamic bike transition probability between station clusters; 5) a 

Check-Out/In Inference algorithm to calculate the check-out/in of 

each station cluster based on the outputs of the former components. 

Our contributions are three-fold:  

 The Bipartite Station Clustering algorithm formulates a two-

level hierarchy of stations where the root consists of all the 

stations in a city, improving the prediction accuracy for three 

reasons: First, the total check-out in a city (i.e. the higher level 
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node) is much more robust, regular and easier to predict, 

providing a bound to the total check-out across clusters in the 

lower level; Second, the total traffic in a cluster is more regular 

and easier to predict than that at an individual station; Third, 

the inter-cluster transition is more concentrated, thus more 

robust, than that between stations. Our clustering method 

considers stations’ geographical locations and transition 

patterns in an iterative approach, resulting in much better 

clusters than other clustering methods. 

 We propose a multi-similarity-based inference model to pre-

dict the check-out proportion across clusters and the inter-

cluster transition. The model integrates multiple similarities 

between the features of the time period to be predicted and 

those of historical periods. Different features have their own 

similarity functions, which are learned collectively from 

historical data and aggregated by a similarity production. The 

model handles the unbalanced distribution in observations. 

 We evaluate our model with real data from NYC and D.C. Our 

model outperforms the baselines (a 0.03 reduction rate on 

error), especially under anomalous situations (a 0.18/0.23 

reduction rate). The datasets have been released in [26].  

2. Overview 
This section defines the notations (in Table 1) and terminologies 
used in this paper. Then we provide an overview of the framework. 

Table 1. Notations 

Notation Description 

𝑆𝑖 The 𝑖𝑡ℎ station 

𝑛 Number of stations 

𝐶𝑖 The 𝑖𝑡ℎ cluster 

𝑚 Number of clusters 

𝑂𝐶𝑖,𝑡
/𝑂𝑆𝑖,𝑡

 Check-out of cluster 𝐶𝑖/ station 𝑆𝑖 in time 𝑡 

𝐼𝐶𝑖,𝑡
/𝐼𝑆𝑖,𝑡

 Check-in of cluster 𝐶𝑖/ station 𝑆𝑖 in time 𝑡 

𝐸𝑡 Entire traffic in time 𝑡 

𝑇𝑡,𝑚×𝑚 Inter-cluster transition matrix in time 𝑡 

𝑃𝑡 Check-out proportion vector in time 𝑡 

𝑓𝑡 Feature vector in time 𝑡 

𝑀𝑡 Meteorology vector in time 𝑡 

𝐷𝑚×𝑚 Trip duration matrix 

2.1 Preliminary & Problem Definition 

Definition 1: Trip. A trip 𝑇𝑟 = (𝑆𝑜, 𝑆𝑑 , 𝜏𝑜 , 𝜏𝑑) is a bike usage reco-

rd, where 𝑆𝑜 denotes the origin station, consist of latitude 𝑆𝑜. 𝑙𝑎𝑡 

and longitude 𝑆𝑜. 𝑙𝑜𝑛; 𝑆𝑑 denotes the destination station, consist of 

latitude 𝑆𝑑. 𝑙𝑎𝑡 and longitude 𝑆𝑑. 𝑙𝑜𝑛; 𝜏𝑜 and 𝜏𝑑 are the time when 

the bike is checked out at 𝑆𝑜 and checked in at 𝑆𝑑 respectively. 

Definition 2: Meteorology. The meteorology 𝑀𝑡 = (𝑤𝑡 , 𝑝𝑡, 𝑣𝑡) is a 

vector corresponding to period 𝑡, where 𝑤𝑡, 𝑝𝑡 and 𝑣𝑡 stand for the 

weather, temperature and wind speed in 𝑡 respectively.  

Definition 3: Check-out/in. Check-out 𝑂𝐶𝑖,𝑡
/ check-in 𝐼𝐶𝑖,𝑡

 is the 

number of bikes checked out/in in cluster 𝐶𝑖 during time period 𝑡. 

Definition 4: Entire traffic. Entire traffic 𝐸𝑡 is the total number of 

bikes that are checked out in the whole city during time period 𝑡. 

Problem Definition: Check-out/in prediction problem. Given a set 

of historical trips 𝑇𝐻 = {𝑇𝑟1, 𝑇𝑟2, … , 𝑇𝑟𝐻}, we want to predict the 

check-out/in of each station 𝑆𝑖 , 𝑖 = 1,2,… , 𝑛 (cluster 𝐶𝑖 , 𝑖 = 1,2, …, 
𝑚) during a future period, which is set as 1 hour in our work. 

2.2 Framework 
Fig.1 shows the framework of our model, which consists of two 

processes: offline process and online process. 

 

Fig. 1. Framework of our model 

Offline Process: As shown with green rectangles in Fig.1, the 

offline process consists of the following five parts: 

1) Bipartite station clustering: To address the irregular fluctuation 

issue at each individual station, we propose a bipartite clustering 

algorithm to cluster stations into groups. In bipartite station cluste-

ring, stations are clustered based on their geographical locations 

and historical transition patterns. As a result, stations in one cluster 

should not only be closed to each other geographically, but also 

have similar transition patterns to all clusters. The result of clust-

ering is the foundation of the following steps as all models are 

learned based on clusters except for the entire traffic model.  

2) Entire traffic learning: We leverage GBRT to learn an entire 

traffic model, which is the ‘root’ of our hierarchical prediction. The 

features considered in GBRT which affect the entire traffic signifi-

cantly are extracted according to historical check-out/in data and 

meteorology data.  

3) Check-out proportion learning: To allocate the entire traffic to 

each cluster, we need to predict the check-out proportion across 

clusters. Check-out proportion is predicted by a multi-similarity-

based inference model. The 𝐻 most recent proportions, 𝑃1, 𝑃2, …,  
𝑃𝐻, to the future period 𝑡 whose proportion 𝑃𝑡 we want to predict, 

are selected out. For 𝑃1, 𝑃2, … , 𝑃𝐻 and 𝑃𝑡, their corresponding time 

and meteorology features 𝑓1, 𝑓2, … , 𝑓𝐻  and 𝑓𝑡  are extracted to 

calculate the similarities: 𝑊(𝑓1, 𝑓𝑡),𝑊(𝑓2, 𝑓𝑡), …,   𝑊(𝑓𝐻 , 𝑓𝑡); here, 

𝑊 is a similarity function. These similarities are the weights we 

used to calculate the weighted average of 𝑃1, 𝑃2, . . ., 𝑃𝐻, which is 

considered as the predicted check-out proportion in period 𝑡. The 

similarity function 𝑊 is learnt in this step.  

4) Inter-cluster transition learning: After a bike is checked out, 

predicting its transition is necessary for check-in prediction. An 

inter-cluster transition matrix (defined in 3.4) is used to describe 

where a bike will be checked in given where and when it is checked 

out. It is predicted using the same model with the previous step, a 
multi-similarity-based inference model.  

5) Trip duration learning: The trip duration is another important 

element in transition. The trip duration between each pair of clus-

ters is described by a lognormal distribution, whose parameters are 

calculated by maximum likelihood estimation. These two transition 

elements: inter-cluster transition and trip duration will be used in 

the check-in inference step later to help us estimate the probability 

that a bike will be checked in to a special cluster during a special 
time period, given when and where it is checked out. 

Online Process: As shown with yellow rectangles in Fig. 1, the 

online process consists of four steps: entire traffic prediction, 

check-out proportion prediction, inter-cluster transition prediction 

and check-out/in inference. We extract the time and meteorology 
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features of the future period 𝑡 , which we want to predict, and 

leverage the entire traffic prediction model, check-out proportion 

prediction model and inter-cluster transition prediction model 

learned previously to predict: 1) the entire traffic; 2) the check-out 

proportion across clusters; 3) the inter-cluster transition matrix. 

Then each cluster’s check-out/in can be easily inferred, incorpo-

rating the trip duration distributions learned in offline process. 

3. Offline Process 

3.1 Bipartite Station Clustering 

3.1.1 Insights 

We group individual stations into clusters according to their geo-

graphical locations and transition patterns. Fig. 2 A) presents an 

example of the station clustering result in NYC, where points with 

the same color denote stations pertaining to a same cluster. The 

reasons that we group stations into clusters are two-fold: 

 

Fig. 2. Bike data from 1st Jun. to 10th Jul., 2014, in NYC 

1) Affected by multiple complex factors, such as meteorology and 

correlation between stations, a single station’s traffic seems too 

chaotic to predict. Fig. 2 B) and C) respectively show check-out 

from 9:00am to 10:00am of two nearby stations, 𝑆1 and 𝑆2 from a 

same cluster, which change from day to day very differently. In 

addition, it seems impossible to find any periodicity and regularity 

from an individual station’s check-out. Particularly, at stations 

whose check-out is sparse, e.g. 𝑆2, the fluctuations over its mean 

observation seem random. Clustering stations has three benefits:  

First, after grouping some individual stations into a cluster 𝐶1, as 

presented in Fig. 2 D) of its check-out during 9:00am-10:00am, the 

periodicity and regularity become much obvious than those of a 

single station, thus easier to predict. Second, the clusters formulate 

a two-level hierarchy of stations, shown in Fig. 2 F), based on 

which we can conduce hierarchical prediction. Fig. 2 E) shows the 

entire traffic from 9:00am to 10:00am. We can see that its periodi-

city and regularity are even more obvious and robust, which makes 

the entire traffic prediction easier and more accurate. Thus the 

hierarchical prediction can improve the accuracy as an accurate 

prediction in the higher level (entire traffic) can bind the prediction 

error in the lower level (check-out across clusters). Third, the check 

-out proportion across clusters and the inter-cluster transition are 

more concentrated, thus robust, than those of stations. This is 

confirmed by Fig. 2 G), which shows the average deviation of 

check-out proportion of cluster 𝐶1, cluster 𝐶2, station 𝑆1 and station 

𝑆2, all in each hour of the day. The figure about transition is similar 

and we do not show here for space reason. 

2) In reality, predicting the check-out/in of each individual station 

is not necessary. Understanding each cluster’s check-out/in is 

enough for bike reallocation because users usually check out/in 

bikes at a random station closed to their origins/destinations. If a 

station is without available bikes/docks, it is convenient for a user 

to check out/in a bike at another station nearby. In addition, if some 

events happen, which may affect bike usage, they usually influence 

an area instead of only an individual station.  

We consider the geographical location and transition pattern of a 

station simultaneously in an iterative approach for two reasons: 

1) Considering that our aim is to offer more convenience to users, 

stations in one cluster should be close to each other geographically. 

Thus it is practical for a user whose origin/ destination is close to a 

station without available bikes/docks to walk/ride to another station 

in the same cluster to check out/in a bike. 

2) In addition, as transition between clusters needs to be predicted 

later, we would like the inter-cluster transition to be robust in order 

to improve prediction accuracy. Therefore, the stations in one 

cluster should have similar transition patterns to all the clusters. 

Consequently, the transition vector of a cluster 𝐶𝑖 , which is a 

multinomial distribution, would concentrate on several values 

instead of being more even distributed. For example, comparing 

two multinomial distributions, (0.1, 0.1,… , 0.1)  and (0.6, 0.4,0,
… , 0), it is obvious that the first one is more even distributed but 

less robust than the second one. 

3.1.2 Methodology 

Fig. 3 A) presents the iterative procedure of the bipartite clustering 

algorithm, which organically combines two factors (location and 

transition) of a station, without needing to assign a weight for each 

factor, which requires for prior knowledge. Circles with the same 

color denote bike stations that belong to the same cluster. The 

algorithm repeats the following three steps in each iteration: geo-

clustering, t-matrix generation and t-clustering.  

 

Fig. 3. Bipartite clustering algorithm procedure 

1) Geo-Clustering. This step clusters stations into 𝐾1  groups, 

{𝐶1,𝑘} 𝑘=1
𝐾1 , according to stations’ geographical locations by K-

mean clustering. For the first time, Geo-clustering is conducted on 

all stations in a sharing system. For the following times, Geo-

clustering is conducted on the stations in each cluster obtained in 

Step 3) proportionally. For example, if the number of stations in 

each cluster obtained in Step 3) is 𝑁1, 𝑁2, … , 𝑁𝐾2
, then we cluster 

the stations in each cluster into [
𝑁1𝐾1

𝑛
], [

𝑁2𝐾1

𝑛
] ,… , [

𝑁𝐾2𝐾1

𝑛
] groups 

respectively, here [ˑ] is a rounding operator. 

2) T-matrix generation. Based on clusters obtained in Step 1), we 

generate a t-matrix for each station. A t-matrix describes a station’s 

transition pattern. It has seven rows, corresponding to seven time 

slots: 7:00am-11:00am (morning rush hours), 11:00am-4:00pm 

(day hours), 4:00pm-9:00pm (evening rush hours) and 9:00pm-

7:00am (night hours) on weekdays; 0:00am-9:00am (night hours), 
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9:00am -7:00pm (trip hours) and 7:00pm-12:00pm (evening hours) 

on weekends/holidays. Each entry, (𝐴𝑖)𝑙,𝑗, is the probability that a 

bike will be checked in to cluster 𝐶1,𝑗, given that it is checked out 

in time slot 𝑙 from station 𝑆𝑖. The conditional probability is estim-

ated by maximum likelihood estimation from historical bike data. 

Fig. 3 B) gives a running example of t-matrix generation. 

3) T-clustering. After obtaining a set of t-matrices, {𝐴𝑖}𝑖=1
𝑛 , we 

cluster the stations into 𝐾2 clusters, {𝐶2,𝑘} 𝑘=1
𝐾2 , according to their t-

matrices by K-mean clustering, here 𝐾2 < 𝐾1. 

Iterate these three steps until the 𝐾1  clusters obtained in Step 1) 

converge or the iteration threshold K is reached. The 𝐾1 clusters, 

{𝐶1,𝑘} 𝑘=1
𝐾1 , are the final clustering results. The algorithm’s pseudo-

code is described in Alg. 1. 

Algorithm 1: Bipartite Clustering Algorithm 

Input:    Stations {𝑆𝑖}𝑖=1
𝑛 , historical trips {𝑇𝑟𝑖}𝑖=1

𝐻 , iteration     

               threshold K, parameters 𝐾1 > 𝐾2; 

Output:  𝐾1 clusters: 𝐶1,1, 𝐶1,2, … , 𝐶1,𝐾1
; 

1.  Cluster {𝑆𝑖}𝑖=1
𝑛  into 𝐾1 clusters: 𝐶1,1, 𝐶1,2, … , 𝐶1,𝐾1

 by K-mean 

     based on locations; 

2.  Initialize 𝑘 = 0; 

3.   While 𝑘 < 𝐾 Do 

4.        For 𝑖 = 1: 𝑛 Do 

5.              Generate t-matrix 𝐴𝑖 of station 𝑆𝑖; 

6.        Cluster {𝑆𝑖}𝑖=1
𝑛  into 𝐾2 clusters: 𝐶2,1, 𝐶2,2, … , 𝐶2,𝐾2

 by K-mean 

           based on {𝐴𝑖}𝑖=1
𝑛 ;  

7.        For 𝑗 = 1:𝐾2 Do 

8.              Cluster stations in 𝐶2,𝑗 into [
𝑁𝑗𝐾1

𝑛
] clusters; 

9.        Obtain 𝐾1 updated clusters: 𝐶1,1, 𝐶1,2, … , 𝐶1,𝐾1
 

10.      If  𝐶1,1, 𝐶1,2, … , 𝐶1,𝐾1
 do not change Then 

11.            Break;  
12.      K=k+1;  

13. Return 𝐾1 clusters: 𝐶1,1, 𝐶1,2, … , 𝐶1,𝐾1
. 

Algorithm 1. Bipartite clustering algorithm 

3.2 Entire Traffic Learning 

In our hierarchical prediction model, the traffic in the higher level, 

i.e. the entire traffic, is predicted first. The entire traffic is predicted 

by GBRT [11], which is a non-parametric statistical learning tech-

nique for regression. GBRT is one of the most effective machine 

learning models for prediction. It is flexible enough to fit complex 

nonlinear relationships. 

The general idea of GBRT is to compute a sequence of simple 

regression trees, {𝑔1(𝑥), 𝑔2(𝑥), … , 𝑔𝑟(𝑥)}, where each successive 

tree is built to predict the residual of the preceding trees, as shown 

by Eq. 1 and Eq. 2: 

                𝑔𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔 ∑ 𝐿(𝑦𝑡 − 𝐺𝑖−1(𝑥𝑡), 𝑔(𝑥𝑡))
𝑁
𝑡=1              (1) 

             𝐺𝑖−1(𝑥) = ∑ 𝑔𝑙(𝑥)𝑖−1
𝑙=1                                                   (2) 

Here, 𝐿 is a loss function and {𝑥𝑡 , 𝑦𝑡}𝑡=1
𝑁  is the training data set. 

Predictions are made by combining decisions of {𝑔1(𝑥), 𝑔2(𝑥),   
… , 𝑔𝑟(𝑥)} as shown by Eq. 3: 

                    𝐺(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) + ⋯+ 𝑔𝑟(𝑥)                      (3) 

In entire traffic prediction, the variables 𝑥𝑡 are features correspond-

ing to period 𝑡,  which have significant influence on the entire 

traffic; 𝑦𝑡 is the ground truth, i.e. the actual entire traffic in period 

𝑡. Thus, we need to identify the important features first.  

Time features: The entire traffic is affected by time. We identify 

two time features: the hour of the day and the day of the week. Fig. 

4 shows the average entire traffic in Aug., 2014, during different 

hours and on different days. As we can see, the entire traffic on 

weekdays are similar, consisting of morning rush hours, day hours, 

evening rush hours and night hours while those on weekends/holi-

days are similar, consisting of night hours, trip hours and evening 

hours. The entire traffic on weekdays is much larger than that on 

weekends/holidays and that in rush hours/trip hours is much larger 

than those in other time slots. Therefore, the hour of the day and the 

day of the week are important features in entire traffic prediction.  

Fig. 4. Average entire traffic in NYC 

Meteorology features: Bike is a kind of transportation which is 

affected by meteorology significantly. Three major meteorology 

features are identified: weather, temperature and wind speed. Fig. 

5 A) shows the average entire traffic in NYC during 6:00am-

7:00am, 7:00am-8:00am and 8:00am-9:00am on different days in 

Aug., 2014. For each special period, we can discover an obvious 

pattern except for the points in red circles. These exceptional points 

all correspond to 13th, Aug., which were rainy. A large number of 

this kind of exceptive examples in historical data support the 

conclusion that weather influences the entire traffic significantly. 

Based on historical data, we categorize all weather patterns into 

four categories: snowy, rainy, foggy and sunny. Fig. 5 B) shows the 

total traffic every day from Feb. to Aug., 2014, in NYC. As we can 

see, there is an increasing trend. This is because that the temper-

ature keeps increasing from Feb. to Aug. Fig. 5 C) describes the 

average entire traffic in D.C. during 8:00am-9:00am in Sep., 2014. 

The anomalous point in the red circle corresponds to 25th, Sep., 

which was a windy day. Lots of similar anomalous points related 

to wind speed can be found on other days as well. In summary, three 

meteorology features: weather, temperature, and wind speed, affect 

the entire traffic significantly.  

 

Fig. 5. Average entire traffic 

After identifying the time and meteorology features, 𝑓𝑡, influencing 

the entire traffic, we can obtain a historical dataset {(𝑓𝑡 , 𝑦𝑡)}𝑡=1
𝑇  to 

train a GBRT model for online prediction.  

3.3 Cluster Check-out Proportion Learning 

3.3.1 Insights 

To allocate the entire traffic to each cluster, we predict each 

cluster’s check-out proportion first. Based on the predicted entire 

traffic and proportion across clusters, each cluster’s check-out can 

be easily calculated. A multi-similarity-based inference model is 
proposed in this section. This model has two advantages: 

1) The model can handle the unbalanced meteorology distribution 

problem. Fig. 6 A) shows the weather distribution in NYC from 1st, 

Apr. to 30th, Sep. (4392 hours), most of which are sunny hours 

while only two hours are snowy (snowy hours cannot be seen in 
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Fig. 6 A) as its proportion is too small to appear). If we partition 

the data and learn the prediction model under each special weather 

category, there would be a data sparsity problem. If a regression 

model, e.g. linear regression, is adopted, the model is trained to fit 

the majority of observations, e.g. sunny hours, thereby scarifying 

the accuracy of the model under minor conditions, e.g. rainy hours. 

In addition, as shown in Fig. 6 B), the historical temperature & wind 

speed scenarios in NYC from 1st Apr. to 30th Sep., many scenarios 

did not appear historically but could possibly happen in the future. 

To those ‘missing’ meteorology scenarios, we cannot predict solely 
by partitioning data. 

 

Fig. 6. Unbalanced meteorology in 2014 

2) The model can guarantee that the sum of the check-out 

proportion across clusters is 1.  Similar to the interaction between 

stations, clusters have influence between each other as well. This 

constraint incorporates the interaction between clusters into the 

model. If we predict the check-out of each cluster individually, the 

influence between clusters will be ignored. 

Our multi-similarity-based inference model integrates three simi-

larity functions between features of the period to be predicted and 

those of historical ones: 

1) Time similarity 𝜆1(𝑡1, 𝑡2). Intuitively, the check-out proportion 

across clusters changes from time to time. First, the proportion 

changes from hour to hour in a day. For example, to the clusters 

which mainly consist of stations near residential areas, their check-

out proportions in morning rush hours would be much larger than 

those in evening rush hours. Second, the proportion changes from 

day to day in a week. For example, for the clusters which mainly 

consist of stations close to tourist areas, their check-out proportions 

in trip hours on weekends/holidays would be much larger than 

those on weekdays. 

2) Weather similarity 𝜆2(𝑤𝑡1
, 𝑤𝑡2

). As proportion across clusters 

is a vector instead of a single value, we illustrate how to visualize 

it first. Euclidean distance is adopted to measure the difference of 

two proportion vectors (i.e. proportion distance). Analyzing NYC’s 

and D.C.’s historical bike data, we extract a proportion distance 

pattern over one week shown in Fig. 7 C) (stations are clustered as 

Fig. 2 A)). Each node describes the distance between two propor-

tion vectors in a special hour on two successive days. As we can 

see, the distances between vectors on two successive weekdays, 

e.g. Mon. and Tue., denoted by green circles are small and similar 

while those between vectors on a weekday and a weekend/holiday, 

e.g. Fri. and Sat., denoted by red circles, are much larger. Unexpe-

ctedly, the distance between vectors on Sat. and Sun., denoted by a 

yellow circle, is not as small as those between two weekdays. We 

think this is because people usually treat the first and the last day 

of a holiday differently. However, as it is much smaller compared 

with those between a weekday and a weekend/holiday, we do not 

differentiate them. The pattern is used to detect anomalies.  

Fig. 7 A) shows the distance of two check-out proportion vectors 

during 7:00am-8:00am on two successive days in Aug., from the 

bike-sharing system in NYC, e.g., the point (5, 0.0298) means the 

distance between the check-out proportion vectors during 7:00am-

8:00am on 5th Aug. and on 6th Aug. is 0.0298. Compared with Fig 

7. C), points in solid circles are anomalous while those in the dash 

circles match the pattern well. The two points in the solid circle 

correspond to two pairs of successive days: 12th Aug. and 13th Aug., 

13th Aug. and 14th Aug. Among these three time periods, 7:00am-

8:00am on 13th Aug. is a rainy hour while the other two are sunny 

hours. Different weather patterns lead to larger difference between 

check-out proportion vectors. Lots of this kind of points can be fou-

nd, which supports our conclusion that weather influences check-
out proportion across clusters significantly. 

 
Fig. 7. Check-out proportion distance in 2014 

3) Temperature & wind speed similarity 𝐾 ((𝑝𝑡1
, 𝑣𝑡1

), (𝑝𝑡2
, 𝑣𝑡2

)). 

Fig. 7 B) shows the distance of proportion vectors during 7:00am-

8:00am on two successive days of Sep. in D.C. The anomalous 

points in solid circles correspond to two pairs of successive days: 

24th Sep. and 25th Sep., 25th Sep. and 26th Sep., among which, 25th 

Sep. is a windy day while the other two days have low wind speeds. 

Other points of this kind can be found to confirm that wind speed 

influences the check-out proportion across clusters significantly. In 

a similar way, temperature is identified as another important feature 

and we do not show here for space reason. 

We consider the three factors of meteorology, weather, temperature 

and wind speed with two different similarity functions instead of 

one for two reasons: First, the values of weather are discrete while 

those of temperature & wind speed are continuous, whose discreti-

zation needs prior knowledge. Second, to temperature & wind 

speed, there are ‘missing’ scenarios which do not exist to weather.  

3.3.2 Methodology 

Assume that, 1, 2,… , 𝐻 are the 𝐻 most recent periods to 𝑡, whose 

check-out proportion across clusters we want to predict. Denote 

their corresponding check-out proportions as 𝑃1, 𝑃2, … , 𝑃𝐻 and 𝑃𝑡, 

features as 𝑓1 , 𝑓2, … , 𝑓𝐻 and 𝑓𝑡. Therefore, 𝑃𝑡 can be predicted by a 

multi-similarity-based inference model shown in Eq. 4: 

𝑃�̂� =
∑ 𝑊(𝑓𝑖,𝑓𝑡)×𝑃𝑖

𝐻
𝑖=1

∑ 𝑊(𝑓𝑖,𝑓𝑡)
𝐻
𝑖=1

                                    (4) 

The multi-similarity function, 𝑊(𝑓𝑖 , 𝑓𝑡), is obtained by Eq. 5: 

𝑚𝑖𝑛𝑊 ∑ 𝐿(𝐸𝑡 × 𝑃𝑡, 𝐸𝑡 × 𝑃�̂�)
𝑇
𝑡=𝐻+1                        (5) 

Here, 𝑇 is the sample size of historical data. 𝐸𝑡 × 𝑃𝑡 and 𝐸𝑡 × 𝑃�̂� 

stand for the ground truth and prediction value of check-out across 

clusters, respectively; 𝐿  is a loss function used to measure the 

prediction error. The multi-similarity function W has three comp-

onents: time similarity, weather similarity, and temperature & wind 

speed similarity, as shown in Eq. 6: 

W(𝑓𝑖 , 𝑓𝑡) = 𝜆1(𝑖, 𝑡) × 𝜆2(𝑤𝑖 , 𝑤𝑡) × 𝐾((𝑝𝑖 , 𝑣𝑖), (𝑝𝑡, 𝑣𝑡))      (6) 

Time Similarity: Intuitively, check-out proportions corresponding 

to the same hour of a day are more similar than those corresponding 

to different hours, given that the other features are similar. In addi-

tion, if two proportion vectors both belong to weekdays or week-

ends/holidays and correspond to similar other features, the more 

closed the two days are, the more similar these two vectors should 

be. For example, the check-out proportion across clusters in 

8:00am-9:00am yesterday is more similar with that in 8:00am-
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9:00am today than that in the same period one month ago, given 

that their other features (day of the week, meteorology) are similar. 

Thus, we define a time similarity function as Eq. 7: 

𝜆1(𝑡1, 𝑡2) = 1𝑡1,𝑡2
× 𝜌1

∆ℎ(𝑡1,𝑡2) × 𝜌2
∆𝑑(𝑡1,𝑡2)                           (7) 

∆ℎ(𝑡1, 𝑡2) = 𝑚𝑖𝑛 {𝑟(𝑡1, 𝑡2), 24 − 𝑟(𝑡1, 𝑡2)}                         (8) 

𝑟(𝑡1, 𝑡2) = 𝑚𝑜𝑑(|𝑡1 − 𝑡2|, 24)                                             (9) 

∆𝑑(𝑡1, 𝑡2) = [
|𝑡1−𝑡2|

24
]                                                           (10) 

Here, 1𝑡1,𝑡2
= 1 if 𝑡1  and 𝑡2  are both on weekdays or weekends 

/holidays, otherwise, 1𝑡1,𝑡2
= 0. ∆ℎ measures the distance of two 

time periods from the perspective of the hour of the day. For 

example, assuming historical data in Jun., 2014 as the training data, 

there are 720 hours: 𝑡 = 1, 2, 3, … , 720. Then,  ∆ℎ(12,34) = 2 

means that, from the perspective of time of day, the distance 

between 𝑡 = 12 corresponding to 12:00am on 1st Jun. and 𝑡 = 34 

corresponding to 10:00am on 2nd Jun. is 2 hours. Similarly, 

∆ℎ(12,38) = 2 means the distance between 12:00am on 1st Jun. 

and 2:00pm on 2nd Jun. is 2 hours as well. ∆𝑑 measures the distance 

of two time periods from the perspective of the day of the week, 

e.g. ∆𝑑(12,34) = ∆𝑑(12,38) =1. 

Weather similarity: The weather patterns are categorized into four 

categories: snowy, rainy, foggy and sunny. We use a symmetric 

similarity matrix with six parameters: 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6  to 

define the weather similarity function 𝜆2(𝑤𝑡1, 𝑤𝑡2). The similarity 

matrix is shown in Fig. 8. The value of the function can be looked 

up from the matrix. For example, if 𝑤𝑡1
= 𝑟𝑎𝑖𝑛𝑦, 𝑤𝑡2

= 𝑠𝑢𝑛𝑛𝑦, 

then 𝜆2(𝑤𝑡1, 𝑤𝑡2) corresponds to the entry in the second row and 

the forth column: 𝛼5. 

 

Fig. 8. Weather similarity matrix 

Based on our experience, we can add some constraints to these six 

parameters. As we know, the more different two weather patterns 

are, the smaller the similarity between them is. Thus, we add the 

following constraints to them: 

𝛼1 > 𝛼2 > 𝛼3, 𝛼4 > 𝛼5,  𝛼6 > 𝛼5 > 𝛼3, 𝛼4 > 𝛼2. 

Temperature & wind speed similarity: Temperature/wind speed 

domain is continuous. Their historical data has ‘missing’ scenarios. 

Therefore, we choose a 2-D Gaussian Kernel function [16] to 

measure the similarity between (𝑝𝑡1
, 𝑣𝑡1

) and (𝑝𝑡2
, 𝑣𝑡2

) so that the 

similarity between ‘missing’ scenarios can be estimated as well. 

The 2-D Gaussian Kernel function is as Eq. 11: 

𝐾 ((𝑝𝑡1
, 𝑣𝑡1

), (𝑝𝑡2
, 𝑣𝑡2

)) =
1

2𝜋𝜎1𝜎2
𝑒
−(

(𝑝𝑡1−𝑝𝑡2
)
2

𝜎1
2 +

(𝑣𝑡1−𝑣𝑡2
)
2

𝜎2
2 )

 (11) 

As the prediction errors of successive time periods are not indepen-

dent, we add an error correction item to the multi-similarity-based 

inference model. Thus, the multi-similarity-based model we adopt 

practically is as Eq. 12: 

𝑃�̂� =
∑ 𝑊(𝑓𝑖,𝑓𝑡)×𝑃𝑖

𝐻
𝑖=1

∑ 𝑊(𝑓𝑖,𝑓𝑡)
𝐻
𝑖=1

+ ∑ 𝜓𝑗𝑒𝑡−𝑗
𝐽
𝑗=1                    (12) 

Here, the added items 𝑒𝑡−𝑗 = 𝑃𝑡−𝑗 − 𝑃𝑡−𝑗
̂  are the prediction errors 

of periods 𝑡 − 𝑗, 𝑗 = 1,2,… , 𝐽; 𝐽 is a threshold of time lag. 

3.4 Inter-cluster Transition Learning 

In order to guarantee the causality between check-out and check-in, 

we predict each cluster’s check-in based on their check-out. Inter-

cluster transition is an important factor in measuring the perform-

ances of checked out bikes. 

Definition 5: Transition Probability. The transition probability 

from cluster 𝐶𝑖 to 𝐶𝑗 in time 𝑡 is the probability that a bike will be 

checked in to cluster 𝐶𝑗 given that it is checked out from 𝐶𝑖 in time 

𝑡. Note that only the check-out time is constrained to 𝑡 while the 

check-in time can be a random possible value. 

Definition 6: Inter-cluster Transition Matrix. An inter-cluster tran-

sition matrix in 𝑡  is a matrix 𝑇𝑡,𝑚×𝑚  corresponding to period 𝑡 , 

each of whose entry, 𝑇𝑡,𝐶𝑖,𝐶𝑗
 is a transition probability from cluster 

𝐶𝑖 to cluster 𝐶𝑗 in time 𝑡. 

Inter-cluster transition matrix describes the transition probability 

between clusters. Similar to the check-out proportion across clus-

ters, the inter-cluster transition matrix is affected by the correlations 

between clusters, the time, and the meteorology as well. Thus, we 

adopt the same model, multi-similarity-based inference model, to 

predict the inter-cluster transition matrix.   

3.5 Trip Duration Learning 

Trip duration between each pair of clusters is another important 

factor in measuring the behavior of a checked out bike. The trip 

duration distribution between a pair of clusters is mainly determ-

ined by the locations of stations in them, which are spatially instead 

of temporally determined. In bike traffic, jam is no longer an impor-

tant factor that affects trip duration, thus under most meteorology 

scenarios except for the really severe ones, trip duration does not 

change too much. We assume that the trip duration distribution 

between each pair of clusters is constant. The severe meteorology 

scenarios are ignored because we have discovered that the severe 

ones mainly affect the bike traffic demand instead of the trip dura-

tion according to historical bike data. We think this is because if a 

customer chooses to ride a bike on a snowy day, for example, this 

means that the snow may not be a big obstacle on their ways to the 

destination, otherwise, they may prefer another kind of transp-

ortation, which results in a decrease in bike traffic demand. 

 

Fig. 9. Trip duration distribution 

According to NYC’s bike data in 2014, we fit the trip duration 

between each pair of clusters by a lognormal distribution. As shown 

in Fig. 9, lognormal distribution fits the real data very well. By 

maximum likelihood estimation, we obtain a symmetric matrix 

𝐷𝑚×𝑚  (i.e. a trip duration matrix). Each entry 𝐷𝑖𝑗  is a vector 

(𝜇𝑖𝑗 , 𝜎𝑖𝑗)  corresponding to the two parameters of a lognormal 

distribution, describing the trip duration between cluster 𝐶𝑖 and 𝐶𝑗.  

4. Online Process 
Check-out inference: In online prediction process, for a future 

period 𝑡, we first extract its feature 𝑓𝑡 and then leverage the three 

models trained above to obtain the entire traffic prediction 𝐸𝑡 , 

check-out proportion prediction 𝑃𝑡  and inter-cluster transition 

matrix prediction 𝑇𝑡,𝑚×𝑚, respectively. Then the check-out of each 

cluster 𝐶𝑖 can be easily calculated by Eq. 13: 
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      𝑂𝐶𝑖,𝑡 = 𝐸𝑡 × 𝑃𝑡,𝑖                                 (13) 

Check-in inference: To predict each cluster’s check-in, we can 

adopt the same model with that used for check-out prediction: 

predict the total check-in of a city; predict the check-in proportion 

across clusters; and calculate each cluster’s check-in. In this section, 

we introduce another algorithm to infer the check-in of each cluster 

based on the check-out, inter-cluster transition matrix and trip 

duration. The insight is that this can guarantee the causality 

between check-out and check-in. Thus, if an anomaly happens, its 

influence to check-in can be predicted at the same time when it 

influences the check-out instead of after a time delay, as check-in 

is always after check-out. We will show the effectiveness of this 

inference algorithm under anomalous scenarios with experiments 

later. In application, these two methods for check-in prediction can 

be used complementarily: the first one for common scenarios and 

the second one for anomalous scenarios. The details of the second 

inference algorithm are illustrated as follow. 

We divide the check-in into two parts. Assume that  the current time 

period is 𝑡 (Denote its corresponding time interval as (𝜏 − 𝛿, 𝜏].), 
then the check-in to cluster 𝐶𝑖  in 𝑡 + 𝛿 are the bikes which have 

been checked out before 𝑡 + 𝛿 and will be checked in to 𝐶𝑖 in 𝑡 +
𝛿, and the bikes that will be checked out in 𝑡 + 𝛿 and be checked 

in to  𝐶𝑖 in 𝑡 + 𝛿. 

Denoting the bikes that have been checked out before 𝑡 + 𝛿  but 

have not been returned as {𝐵1, 𝐵2, … , 𝐵𝑛1
}, to each of them, 𝐵𝑗 , we 

know its original cluster 𝐶𝐵𝑗
 and its check-out time 𝜏𝐵𝑗

. Based on 

the inter-cluster transition matrix and trip duration, we can infer its 

probability to be checked in to cluster 𝐶𝑖 in 𝑡 + 𝛿 as Eq. 14. 

𝑃𝐵𝑗 ,𝑖 = 𝑇𝑡,𝐶𝐵𝑗
,𝐶𝑖

× ∫ 𝐷𝐵𝑗 ,𝑖
𝜏+𝛿−𝜏𝐵𝑗
𝜏−𝜏𝐵𝑗

                   (14) 

Therefore, the expectation of the number of bikes in {𝐵1, 𝐵2,   
… ,𝐵𝑛1

}  that will be checked in to cluster 𝐶𝑖  in 𝑡 + δ  can be 

predicted as Eq. 15. 

𝐸1,𝑖 = ∑ 𝑃𝐵𝑗 ,𝑖𝐵𝑗
                                    (15) 

For bikes that will be checked out in 𝑡 + 𝛿, we can predict their 

check-in to cluster 𝐶𝑖 in 𝑡 + 𝛿 in a similar way. Assuming that each 

cluster’s check-out in 𝑡 + 𝛿  is {𝑂𝐶1,𝑡+𝛿 , 𝑂𝐶2,𝑡+𝛿 , … , 𝑂𝐶𝑚,𝑡+𝛿} , we 

divide 𝛿, which is set as 1 hour in our work, into 60 time slots 

{ (𝜏, 𝜏 +
𝛿

60
] , (𝜏 +

𝛿

60
, 𝜏 +

𝛿

30
] ,… , (𝜏 +

59×𝛿

60
, 𝜏 + 𝛿] }. In other 

words, we set every minute as a time slot. Then the average number 

of bikes checked out in each time slot ∆𝑡 from cluster 𝐶𝑗 is 
𝑂𝐶𝑗,𝑡+𝛿

60
. 

These bikes have 60 − ∆t  time left to be returned in 𝑡 + 𝛿 . 

Therefore, we can obtain the expectation of the number of bikes 

that checked out and checked in to 𝐶𝑖 during 𝑡 + 𝛿 by Eq. 16. 

𝐸2,𝑖 = ∑ ∑
𝑂𝐶𝑗,𝑡+𝛿

60

𝑚
𝑗=1

60
∆𝑡=1 × 𝑇𝑡+𝛿,𝐶𝑗 ,𝐶𝑖

× ∫ 𝐷𝑗𝑖
60−∆𝑡

0
      (16) 

Consequently, the check-in at cluster 𝐶𝑖 in 𝑡 + 𝛿 is the sum of these 

two expectations shown in Eq. 17.  

𝐼𝐶𝑖,𝑡+𝛿 = 𝐸1,𝑖 + 𝐸2,𝑖                                 (17) 

5. Experiments 

5.1 Settings 

5.1.1 Datasets 

We conduct experiments on four datasets (bike data and meteoro-

logy data) from NYC and D.C., as presented in Table 2. For bike 

data, the records with a trip duration less than 1 minute are 

considered as noise data and not taken into account. For meteoro-

logy data, some hours are without a record. We complete the 

missing meteorology data according to the records in their previous 

and next hours; i.e. for missing temperature/wind speed, the 

average value of those in its previous and next periods is used; for 

missing weather, the value in the previous period is used. 

NYC Data: We use the data of Citi Bike system, which is in NYC, 

from 1st Apr. to 30th Sep. in 2014 as the bike data. There are 

5,359,995 records. The data format is: (trip duration, start station 

ID, end station ID, start time, end time). We transfer them into a 

trip set {(𝑆𝑖,𝑜 , 𝑆𝑖,𝑑 , 𝑡𝑖,𝑜, 𝑡𝑖,𝑑)}𝑖=1
5,359,995 .We use the meteorology data 

of NYC, from 1st, Apr. to 30th, Sep., 2014. The data format is: 

(weather, temperature, wind speed). We extract a meteorology 

record for each hour and transfer them into a meteorology set 

{𝑤𝑖 , 𝑝𝑖 , 𝑣𝑖}𝑖=1
4,392

. We set the data from 1st Apr. to 10th Sep. as training 

data and those from 11th to 30th Sep. as testing data. 

D.C. Data: We use the data of Capital Bikeshare system, which is 

mainly in D.C., from 1st Apr. to 30th Sep. in 2014 as the bike data. 

There are 1,886,144 records: {(𝑆𝑖,𝑜 , 𝑆𝑖,𝑑 , 𝑡𝑖,𝑜, 𝑡𝑖,𝑑)}𝑖=1
1,886,144

. The 

meteorology data in D.C., from 1st, Apr. to 30th, Sep., 2014 are trans-

ferred into a meteorology set {𝑤𝑖 , 𝑝𝑖 , 𝑣𝑖}𝑖=1
4,392

. We set the data from 

1st Apr. to 10th Sep. as training data and those from 11th to 30th Sep. 
as testing data. 

Table 2. Details of the datasets in 2014 

Data Sources NYC D.C. 

Time Span 1st, Apr-30th, Sep 1st, Apr-30th, Sep 

Bike Data 

         # Stations 344 351 

         # Bikes 6,800+ 3000+ 

         # Records 5,359,995 1,886,144 

Meteo-

rology 

Data 

Weather 

(# hours) 

Snowy 2 0 

Rainy 231 149 

Foggy 303 150 

Sunny 3856 4093 

Temperature / °C [0, 33] [−2,36] 

Wind speed / mph [0,18] [0,29] 

5.1.2 Baselines & Metric 

The methods proposed in our work to predict the check-out and 

check-in are respectively denoted as: Hierarchical prediction (HP) 

based on bipartite clustering (BC) and multi-similarity-based 

inference (MSI); check-in prediction based on bipartite clustering, 

inter-cluster transition and trip duration (P-TD). In order to 

confirm the effectiveness of our models, we conduct experiments 

to compare our methods with nine baselines. 

HA: We predict the check-out/in by the average value of historical 

check-out/in in the corresponding periods. E.g., for 1:00pm-2:00 

pm on Friday, its corresponding periods are all the historical time 

intervals from 1:00pm to 2:00pm on weekdays. 

ARMA: The check-out/in is a time series. Thus it can be predicted 

by ARMA, which is a common tool for understanding and predi-

cting future values in a time series. Similar to experiments with HA, 

in experiments with ARMA, we differentiate the hour of the day 

and the day of the week as well.   

GBRT: Similar to entire traffic prediction, each cluster’s check-

out/in can be predicted by GBRT directly and individually. 

HP-KNN: Hierarchical prediction method based on KNN is used. 

We predict the entire traffic of the city first and then allocate the 

entire traffic to each cluster based on the proportion across clusters, 

which is predicted by KNN prediction [3]. 



 

GC: Uniform geographical grid clustering. This means we divide 

the city into uniform grids. The stations which fall into the same 

grid form a cluster. GC is commonly used in many works. In our 

work, we use GC instead of K-mean clustering because the stations 

in a city (especially those in NYC) are distributed almost evenly 

instead of into communities. However, K-mean can still be used. 

The nine baselines compared with HP-BC-MSI and P-TD are: 1) 

HA based on GC; 2) HA based on BC; 3) ARMA based on GC; 4) 

ARMA based on BC; 5) GBRT based on GC; 6) GBRT based on 

BC; 7) HP based on GC and KNN; 8) HP based on BC and KNN; 

9) HP based on GC and MSI/ P-TD. 

Metric: The metrics we adopt to measure the results are Root Mean 

Squared Logarithmic Error (RMLSE) and Error Rate (ER). 

𝑅𝑀𝐿𝑆𝐸 =
1

𝑇
∑ √

1

𝑚
∑ (log (𝑋𝐶𝑖,𝑡

̂ + 1) − log ( 𝑋𝐶𝑖,𝑡 + 1))2𝑚
𝑖=1

𝑇
𝑡=1   

𝐸𝑅 =
1

𝑇
∑

∑ |𝑋𝐶𝑖,�̂�−𝑋𝐶𝑖,𝑡
|𝑚

𝑖=1

∑ 𝑋𝐶𝑖,𝑡
𝑚
𝑖=1

𝑇
𝑡=1   

Here, 𝑋𝐶𝑖,𝑡 is the ground truth of the check-out/in of cluster 𝐶𝑖 dur-

ing 𝑡 while 𝑋𝐶𝑖,𝑡
̂  is the corresponding prediction value. 

5.1.3 Anomalous periods 

An anomaly is a period which satisfies one of the following two 

conditions: 1) The entire traffic in this period is much different from 

the pattern; 2) The check-out/in across clusters in this period is 

much different from the pattern. For example, Fig. 10 shows the 

entire traffic in every hour from 11th, Sep. to 17th, Sep. in NYC. 

Points in red rectangles are anomalous periods whose entire traffics 

deviate from the pattern significantly. The ones satisfying the 

second condition can be detected in a similar way.  

As the number of anomalous periods in our testing data are small 

and their deviations are obvious, we can detect them manually. 

However, for massive detection, a formal definition is required. We 

can define ‘much different’ as the data deviate with c×σ from the 

mean, here c is a parameter, σ is the standard deviation of historical 

data. In our experiments, we detect 18 and 12 anomalous periods in 

NYC’s and D.C.’s testing data, respectively. 

 
Fig. 10. Anomalous periods 

5.2 Results 

Results of clustering: It is intuitive that the larger the number of 

clusters is, the lower the prediction accuracy will be. When there is 

only 1 cluster, its check-out is the entire traffic which can be 

predicted with a high accuracy; when there are 𝑛 clusters, which 

means that each station forms a cluster, the check-out/in of a cluster 

fluctuates tremendously and an accurate prediction is difficult if not 

impossible. However, on the other side, the number of clusters 

cannot be too small because if the clusters are too large, e.g. 1 

cluster containing all the stations, reallocating bikes to clusters 

cannot offer convenience to users. Therefore, the number of clust-

ers should be chosen by knowledge and experiences.  

In our experiments, we cluster all the stations in the two bike-

sharing systems in NYC and D.C. into 23 and 27 clusters respect-

ively, by two clustering methods, GC and BC. As shown in Fig. 11, 

the stations in one cluster are close to each other. However, the 

results of BC are much different from those of GC because of the 

additional transition pattern constraint.  

 

Fig. 11. Clustering Results 

Results of Check-out: Based on each clustering result, we compare 

the check-out prediction results of different methods: HA, ARMA, 

GBRT, HP-KNN and HP-MSI (We concentrate on the results of 

NYC data as those of D.C. data are similar). Table 3 shows the 

average RMLSE and ER of all the predicted hours (common and 

anomalous hours) and the anomalous hours, respectively.  

In Table 3, as we can see, when adopting HP-KNN and HP-MSI, 

the results obtained under BC are better than those under GC 

because both of them are hierarchical prediction methods and BC 

can improve the accuracy of proportion prediction. We propose BC 

to guarantee the inter-cluster transition matrix to be more robust. 

Although to ensure more robust check-out proportion is not consi-

dered explicitly in the procedure of BC, it is a byproduct. This is 

because, by BC, the stations clustered into one group perform 

similarly in transition. Similar transition patterns of stations usually 

mean similar points of interest (POIs) around them. Stations having 

similar POIs are more likely to have similar check-out/in perfor-

mances. Thus, in a special time period of a day, the check-out 

proportion vector would concentrate on several values instead of 

being more evenly distributed.  

When adopting HA, ARMA and GBRT, BC is not always better 

than GC. This is because each cluster’s check-out is predicted 

individually. Proportion across clusters, which can be predicted 

more accurately by BC, is not required. 

For anomalous hours, the RMLSE and ER of HA and ARMA are 

very large because neither of these two models have taken any 

external features into account. But on the contrary, the performa-

nces of GBRT, HP-KNN and HP-MSI are much better as they all 

consider temporal features when predicting. Note that although HP-

KNN performs better than GBRT when comparing their results for 

all the predicted hours, its accuracy for anomalous hours is lower 

than that of GBRT. This is because HP-KNN only takes temporal 

features into consideration for higher level prediction but not for 

lower level prediction. HP-MSI, which considers the features for 

both higher and lower level predictions, performs the best no matter 

for common or anomalous conditions. 

In summary, compared to GBRT (common used in practical 

problems), HP-MSI based on BC can reduce ER by 0.03 for all the 

predicted hours and 0.18 for anomalous hours. 

Results of Check-in: Table 4 shows the average RMLSE and ER 

of check-in prediction for all the predicted hours and anomalous 

hours. The analysis to HA, ARMA, GBRT and HP-KNN on data 

from NYC is similar with that of check-out prediction. The only 

difference is that we add another prediction method, P-TD, to 

predict the check-in of each cluster. As we can see, the RMLSE and 

ER of P-TD for all the predicted hours are larger than those of HP-

MSI. However, for anomalous hours, they are much smaller. We 

explain the observations with two reasons: (1) P-TD is based on the 

check-out of each cluster, which is obtained by HP-MSI. Thus the 

additional predictions of inter-cluster transition matrix and trip 

duration add error. (2) In anomalous periods, as the check-out 

13
th

16
th

Mon. Tue. Wed.Thu. Fri. Sat. Sun.

NYC D.C.

GC BC GC BC



 

reduces significantly, the majority of the checked in bikes come 

from the ones that were checked out before. As illustrated in Fig. 

12, the prediction error to the bikes checked out before is smaller 

than that of bikes checked out in the predicted period. Thus it is 

obvious that the less bikes in the pink rectangle (bikes checked out 

in the predicted period), the smaller the error. 

In summary, compared to HP-MSI based on BC, P-TD based on 

BC can further reduce ER by 0.05 for anomalous hours. Because of 

their different performances under different scenarios, in implem-

entation, we adopt HP-MSI and P-TD for check-in prediction com-

plementarily: HP-MSI for common hours and P-TD for anomalous 

hours. The results of experiments on data from D.C., shown in 

Table 3 and Table 4, are similar with those on NYC data, confirm-

ing that our model is applicable to different systems. 

 

Fig. 12. Error analysis 

6. Related Work 

6.1 Prediction in Bike-sharing System 

Bike-sharing system has received increasing attention since its 

beginning in Europe. Demaio [9] and Shaheen et al. [18] overvi-

ewed its history, analyzing the benefits and detriments in the past 

and present, and gave a look into its future. Studies on bike-sharing 

system are summarized into four categories: system design, system 

pattern analysis, system prediction and system operation. 

System design: To set up a bike-sharing system, we need to make 

sure there is demand from citizens, after which reasonable design 

is required. Methodologies in [10] estimated the potential demand 

for bike and the willingness of users to pay in a city; designed the 

locations for stations and the price policies of a sharing system. Lin 

et al. [14] proposed a mathematical model for system planers to 

determine the number and locations of the stations, the network 

structure of bike paths connected stations, as well as the travel paths 

for users between each pair of origin and destination. This work 

addressed the system design problem in an integrated view: setup 

cost, reallocation cost and travel cost. 

System pattern: Understanding the behavior pattern of a bike-

sharing system helps to know the mobility of a city. Jon Froehlich 

et al. [12] and Kaltenbrunner et al. [13] provided a spatiotemporal 

analysis of Barcelona’s bike station usage pattern by clustering 

techniques.  Borgnat et al. [4][5] detected the mobility pattern of 

Vélo’v by interpreting the system as a dynamical network and 

analyzing how the flows are distributed spatially along the network. 

Vogel et al. [19] adopted clustering and clustering validation to 

analyze the bike usage pattern in Vienna. Bargar et al. [1] compared 

usage patterns between different sharing systems and revealed the 

difference in ridership between them. The authors also performed 

community detection to detect areas with high connectedness. 

Works in [8] proposed a model to analyze the patterns in different 

areas of a city by different functions, considering the latent factors 

of each station. 

System prediction: Prediction is another important topic. Jon 

Froehlich et al. [12] compared four simple predictive models to 

predict the availability of bikes at each station: last value, historical 

mean, historical trend and Bayesian network.  Kaltenbrunner et al. 

[13] adopted a statistical model to predict the number of available 

bikes and docks for each bike station. Borgnat et al. [4] used the 

bike data of Lyon’s bike-sharing system, Vélo’v, to predict the 

entire traffic in each hour of the day by a combination model: the 

non-stationary amplitude for a given day added with the fluctuation 

at a specific hour. Vogel et al. [19][20] adopted time series analysis 

to forecast the bike demand in Vienna. Based on bike data from 

Dublin, Yoon et al. [22] proposed a modified ARIMA model, 

considering spatial interaction and temporal factors, to predict the 

available bikes/docks at each station. 

System operation: In system operation, reallocation of bikes is 

necessary in order to compensate for the unbalanced bike usage. 

Workers usually reallocate the bikes by vehicle. Contardo et al. [7], 

Benchimol et al. [2], Chemla et al. [6] presented  mathematical 

formulations to route vehicles to transit the bikes,   considering ext-

ernal features, such as the capacity  of a vehicle,  how unbalanced

Table 3. Prediction error of check-out across clusters 

Method 

All Hours Anomalous Hours 

RMLSE ER RMLSE ER 

NY WA NY WA NY WA NY WA 

GC BC GC BC GC BC GC BC GC BC GC BC GC BC GC BC 

HA 0.387 0.372 0.439 0.451 0.353 0.355 0.453 0.489 1.038 1.027  0.653 0.715 1.964 1.968  2.111 2.136  

ARMA 0.371 0.354 0.413 0.421 0.346 0.346 0.416 0.445 1.114 1.105 0.680 0.722  2.276 2.273 2.245 2.109 

GBRT 0.386 0.369 0.423 0.425  0.311 0.314 0.371 0.375  0.647 0.621 0.686 0.670 0.696 0.683 0.830  0.847 

HP-KNN 0.377 0.358 0.424 0.410 0.298 0.299 0.364 0.359 0.664  0.642 0.685  0.694 0.692 0.685 0.836 0.838 

HP-MSI 0.371 0.349 0.421 0.407  0.288 0.282 0.351  0.347  0.646 0.597 0.679 0.664  0.637 0.503 0.794  0.783  

Table 4. Prediction error of check-in across clusters 

Method 

All Hours  Anomalous Hours 

RMLSE ER RMLSE ER 

NY WA NY WA NY WA NY WA 

GC BC GC BC GC BC GC BC GC BC GC BC  GC BC GC BC 

HA 0.377 0.365 0.435 0.448 0.347 0.352 0.448 0.485 0.954 0.982  0.617 0.672 1.837 1.835 2.201 2.217 

ARMA 0.363 0.352 0.409 0.418 0.340 0.344 0.405 0.445  1.025 1.046 0.631 0.700 2.152 2.143 2.123 2.288 

GBRT 0.382 0.365 0.420 0.422  0.309   0.309 0.370 0.375  0.624 0.653 0.689 0.701 0.681  0.671 0.834 0.835 

HP-KNN 0.375 0.360 0.415 0.411 0.302 0.295 0.367 0.361 0.659  0.647 0.703 0.686 0.694 0.684 0.830 0.830 

HP-MSI 0.365 0.350 0.408 0.402  0.297 0.290 0.353  0.340  0.646 0.608 0.675 0.660  0.642 0.506 0.810  0.802  

P-TD 0.384 0.373 0.425 0.419  0.335 0.302 0.365 0.359  0.626 0.598 0.564  0.558  0.498 0.445 0.802 0.789 
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the distribution of bikes is, the routes between each pair of stati-

ons, etc. Because of the complexity of computation, lower bound 

methods are proposed to extend the models to large databases. 

Currently, reallocation is executed after monitoring, which is not 

efficient. Prediction works can help to detect the potential 

unbalances in advance. 

However, previous prediction methods cannot be adopted to our 

work directly, as our problem is to predict the check-out/in of 

each station cluster instead of the entire traffic. In addition, data 

formats are different, e.g. our dataset does not contain information 

about the number of available bikes/docks at each station while 

those in [12][13][22] do. As bike traffic is impacted by multiple 

complex factors, a more flexible model is required to guarantee a 

higher accuracy. 

6.2 Traffic Prediction in Urban Computing 

A series of traffic prediction research using data-driven methods 

has been done in urban computing [25], which aims to use big 

data to tackle urban challenges. For instance, Shang et al. [17] 

inferred the travel speed and traffic volume on each road segment, 

based on GPS trajectories of a sample of vehicles as well as map 

data and weather conditions. Wang et al. [21] proposed a model 

to predict time-dependent travel time of a path based on taxi 

trajectories, POIs, and road networks. Yuan et al. [23][24] 

presented a Cloud-based system that computes the quickest 

driving routes based on traffic conditions and driver behaviors. 

They even predicted the travel time between two landmark 

locations. Pan et al. [15] proposed to detect traffic anomalies 

based on GPS trajectories and social media.  Our research is also 

a step towards traffic prediction in urban computing, but different 

from existing projects in terms of predictive goals. 

7. Conclusion 

We propose a hierarchical model, which contains a bipartite 

clustering algorithm, a multi-similarity-based inference model, 

and a check-in inference algorithm, to predict the check-out/in of 

each station cluster in a bike-sharing system, based on historical 

bike data and meteorology data. We evaluate our model on four 

datasets from NYC and D.C., obtaining performances which are 

significantly beyond those of baseline methods, especially under 

anomalous conditions (For NYC data, ER is reduced by 0.03 for 

all the hours and 0.18/0.23 for anomalous hours. Similar results 

on D.C. data are obtained.), confirming that our model is better 

and applicable to different bike-sharing systems. In the future, we 

would like to consider more factors, such as events, when predict-
ing the traffic under unusual situations. 
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