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ABSTRACT
Trajectory data has been widely used in many urban applications.

Sharing trajectory data with effective supervision is a vital task, as

it contains private information of moving objects. However, mali-

cious data users can modify trajectories in various ways to avoid

data distribution tracking by the hashing-based data signatures,

e.g., MD5. Moreover, the existing trajectory data protection scheme

can only protect trajectories from either spatial or temporal mod-

ifications. Finally, so far there is no authoritative third party for

trajectory data sharing process, as trajectory data is too sensitive.

To this end, we propose a novel trajectory copyright protection

scheme, which can protect trajectory data from comprehensive

types of data modifications/attacks. Three main techniques are

employed to effectively guarantee the robustness and comprehen-

siveness of the proposed data sharing scheme: 1) the identity infor-

mation is embedded distributively across a set of sub-trajectories

partitioned based on the spatio-temporal regions; 2) the centroid

distance of the sub-trajectories is served as a stable trajectory at-

tribute to embed the information; and 3) the blockchain technique

is used as a trusted third party to log all data transaction history

for data distribution tracking in a decentralized manner. Extensive

experiments were conducted based on two real-world trajectory

datasets to demonstrate the effectiveness of our proposed scheme.
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1 INTRODUCTION
With the advances in location-acquisition technology and mobile

computing, massive trajectory data has been generated from vehi-

cles, people and animals. Trajectory data is very valuable, as it is

used in many urban applications, e.g., travel prediction [19] and

recommendation [23], moving relationship mining [6, 11, 18], and

urban planning [1, 20]. Many organizations have released trajectory

data for profits, research credits, or community services. However,

trajectory data is sensitive, as it contains much private information

of moving objects [3, 4]. As a result, the access to trajectory data

should be well regularized. However, currently, most of trajectory

data is shared or exchanged without any supervision, i.e., the data is

shared freely without tracking its ownership and the redistribution

relations, which leads to many potential problems [2, 17].
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Figure 1: Plagiary of trajectory data.

To this end, a well regulated and supervised data sharing and

redistribution scheme is vital for enabling the prosperous usage of

trajectory data. In another word, it is important and necessary to

identify the illegal redistribution of trajectory data by malicious

data users (or data plagiarists), shown as the bottom part in Figure

1. However, malicious users can modify the original data easily by

adding noises or shifting GPS points to avoid hashing-based data

verification schemes, such as MD5. Moreover, the conventional ID

embedding based verification schemes, which are widely used in

protecting copyrights of images [13], audio [16], and videos [5],

cannot be applied directly in trajectories for the following reasons.

• Data Utility Preservation. To make trajectory data usable in urban

applications, the data utilities, i.e., spatio-temporal properties, of

trajectory should be preserved. However, trajectory data contains

semantic meanings about moving objects, such as routes and pass-

ing by landmarks. Thus every single point of a trajectory is sensitive

to modifications. As the ID embedding based verification schemes

for traditional multimedia do not consider the spatio-temporal prop-

erties of trajectory data, they fail to preserve data utility.

• Various Attack Protection. Data plagiarists can alter the represen-

tation of a trajectory (i.e., the attack) to avoid the hashing based
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and ID embedding based verification schemes without sacrificing

the data utility, e.g., resampling points on a trajectory and adding

some noises. A robust and comprehensive scheme is necessary to

protect the copyright of the data against all possible attacks.

• Data Distribution Tracking. When illegal usage of data is detected,

the data plagiarist can still disavow it since the exchange of data

is not supervised. As trajectory data is very valuable and contains

sensitive personal information, to the best of our knowledge, there is

still no authoritative third party company for trajectory exchange.

Thus, it is necessary to have a protocol to form a decentralized

community to maintain and validate all transactions.

The existing trajectory data protection schemes [8–10] consider

the preservation of spatial property and embed data owner infor-

mation into coordinates of GPS points. [22] further utilizes the

preservation of temporal properties to find some pairs of feature

points and then embeds information into them. However, all of

them do not consider compositional situations and are vulnerable

to some complex attacks, such as resampling the trajectory and

then adding noise on each point. Moreover, all previous schemes

do not consider the real-world situation that no trusted third-party

company is available to maintain the transactions of trajectory data.

To tackle the aforementioned challenges, we propose an inno-

vative scheme, which is a process towards protecting the security

of spatio-temporal data through a knowledge (specifically, identity

information) discovery process. The main intuition of the scheme

is that the attacks applied by plagiarists should still preserve the

spatio-temporal utility of the data. To this end, we first partition

trajectories and distribute the identity information across all the

sub-trajectories. Moreover, we use the centroid distance (i.e., a sta-

ble trajectory spatio-temporal attribute) to embedded information.

Finally, a blockchain based transaction logger is maintained, such

that all data transactions can be verified and the illegal usage of

data can be proved. The main contributions of our work are:

• We summarize a comprehensive set of possible attacks on the

trajectory dataset, including spatial attacks, temporal attacks, spatio-

temporal attacks, and transformation attacks.

• We propose a novel and comprehensive scheme, named Traj-

Guard, to protect trajectory dataset from the illegal data redistribu-

tion. The scheme distributes the identity information based on the

centroid distance of a large number of sub-trajectories.

• We employ a blockchain to maintain a transaction logger for

trajectory data distribution, which decentralizes the authority for

validating the trajectory data transaction.

• We evaluate our scheme on two real-world datasets: Geolife and
T-Drive. The experimental results verify that the embedded in-

formation is robust against various attacks and demonstrate the

superiority of our scheme beyond the baselines.

2 PRELIMINARIES
2.1 Basic Concepts

Definition 1. Trajectory. A trajectory T is a sequence of GPS
points, denoted as T = {⟨ti ,pi ⟩ | ti < ti+1}, where ti is the times-
tamp and pi is a two-dimensional vector (xi ,yi ) which represents the
longitude and latitude of a moving object.

Definition 2. Trajectory Location Estimation. A trajectory
is continuous spatially and temporally in the real world, which can be

approximated by a function as PT (t). The function returns a location
of the moving object at time t . For example, in this paper, we use linear
interpolation for trajectory estimation:

PT (t) = pi +
t − ti

ti+1 − ti
(pi+1 − pi ) t ∈ [ti , ti+1]. (1)

Definition 3. Trajectory Modification Bound. Given an orig-
inal trajectory T , a modified trajectory T ′ is usable, if two trajectory
can be aligned on the time axis and the spatial modification is bounded
by a threshold τ . Formally, the modification bound is expressed as:
maxt |PT (t) − PT′(t)| ≤ τ , where |a − b | represents the distance
between point a and b. In this paper, we adopt Euclidean distance.

Definition 4. Trajectory Centroid. The centroid of a trajectory
T = {⟨ti ,pi ⟩|i = 0...n − 1} is defined as the average coordinates of
points on the trajectory, which can be expressed as:

cT =
1

tn−1 − t0

n−2∑
i=0

∫ ti+1

ti
PT (t)dt . (2)

Definition 5. Trajectory Centroid Distance. The centroid dis-
tance of a trajectory T = {⟨ti ,pi ⟩|i = 0...n − 1} is the average
distance between estimated point and the trajectory centroid:

dT =
1

tn−1 − t0

n−2∑
i=0

∫ ti+1

ti
|PT (t) − cT | dt . (3)

2.2 Problem Formulation
Assume that a data provider needs to distribute a trajectory dataset

T with a required preservation of data utility:

max

t
|PT (t) − PT′(t)| ≤ τ ,

where τ is the maximum permissible excursion. In this paper, we

propose a comprehensive scheme which embeds identity informa-

tion into the trajectory dataset, and the embedded identity informa-

tion is recoverable to confirm the ownership of the data provider

and the identity of the plagiarist from an attacked dataset, as long

as the attacks preserve the data utility.

2.3 System Overview
Figure 2 gives an overview of TrajGuard. It is resistant to a compre-

hensive set of trajectory modifications/attacks, detailed in Section 3.

There are three main processes in the scheme: 1) identity embedding
(detailed in Section 4), 2) ownership detection (detailed in Section 5),

and 3) ownership tracking (detailed in Section 6). We further present

the pseudo code of the system in Appendix Section A.
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Figure 2: Overview of TrajGuard



• Identity Embedding. It embeds identity information into tra-

jectory dataset. We first partition the original trajectory into sub-

trajectories to distribute the identity information across the en-

tire dataset. In each sub-trajectory, the trajectory centroid dis-

tance is used to embed information. Finally, all the embedded sub-

trajectories are concatenated to form a completed trajectory dataset.

• Ownership Detection. It identifies the ownership of trajectory

data, when the data provider obtains a suspicious dataset. First,

it partitions the trajectories with the same settings as the embed-

ding process. Then, the information extraction module extracts the

embedded information from each sub-trajectory. If the extracted in-

formation matches the embedded information, the data ownership

is confirmed and the illegal redistribution activity can be proved.

• Ownership Tracking. The ownership tracking process records

data transaction history, which serves as a trusted third party to

prove the existence of data transactions. In this way, data plagiarists

cannot deny the illegal data redistribution activity, when identity

information is detected. To make it equitable and endorsed by all

individuals, the transaction logger is maintained in a decentralized

mode by a blockchain, such that no one can dominate the logger.

3 ATTACKS ON TRAJECTORY DATA
3.1 Spatial Attacks
Attacks on the spatial domain modify the coordinates of trajectories.

Figure 3 depicts two types of such attacks.

Original trajectory Modified trajectory

(a) Additive Noise (b) Rigid Transformation

Figure 3: Attacks on the spatial domain

• Additive Spatial Noise. It’s a popular attack for trajectory data

[8, 10, 22]. The data plagiarist disturbs the identity information by

adding noise on the coordinates of points. In this paper, we consider

the additive gaussian noise on coordinates (AGNC).

• Rigid Transformation (RT). It contains two types of transfor-

mations: shift and rotation. In RT attack, the shape of the trajectory

and the distance between any pairs of points are preserved.

3.2 Temporal Attacks
The attacks on the temporal domain modify the timestamps. As

shown in Figure 4, each timestamp ti is modified by ∆ti respectively.
There are two types of attacks on the temporal domain.

Original trajectory Modified trajectory

(a) Additive Noise (b) Translation

Figure 4: Attacks on the temporal domain

• Additive Temporal Noise. Similar to the additive noise added

on the coordinates, data plagiarist can also add small noise ∆ti on
each timestamp. In this paper, we consider the additive gaussian

noise on timestamps (AGNT).

• Temporal Shift (TS). For the applications which are not sensi-

tive to the occurring time of a trajectory, the data plagiarist can

shift the temporal information of the trajectory, e.g., subtracting all

the timestamps of GPS points by one day. Formally, ∆t1 = ∆t2 =
... = ∆t where ∆t is a constant chosen by the data plagiarist. In

this way, the temporal relationship between any pairs of points is

invariant, so the utility of data is preserved.

3.3 Spatio-Temporal Attacks
The spatio-temporal attacks modify trajectories on both the spatial

and the temporal domains. Figure 5 depicts three attacks on the

spatio-temporal domain.

(c) Cropping and merging attack
Cropping fragmentMerging fragment

(a) Simplification (b) Linear interpolation

Simplified point Extra points

Figure 5: Attacks on the spatio-temporal domain

• Simplification (SIMP). Trajectory simplification [22] removes

the redundant points in a trajectory, which is mainly used for

improving the efficiency of trajectory data processing.

• Linear Interpolation (LI). It adds some extra points by linear

interpolation (see Eq. 1) between some adjacent points.

• Cropping and Merging Attack (CM).The cropping attack re-

moves some meaningless parts of trajectory. For example, when

estimating the average speed of real-time traffic, we can remove

some pieces of a trajectory which would not affect the estimation.

While the merging attack [7] fuses the pieces of trajectories from

different sources. Both attacks can keep the data utility.

• Hybrid Attack. Furthermore, the data plagiarist can simulta-

neously apply the aforementioned spatial, temporal and spatio-

temporal attacks, leading to a complex alteration of the trajectory.

3.4 Transformation Attacks
We also discuss complex transformation of trajectories, which can

wipe out identity information while keeping the utility of data.

• Double Embedding (DE). The data provider can embed infor-

mation into trajectory data, while the data plagiarist can also embed

his own information to disturb the detection process. Although the

attacked dataset contains the information of the plagiarist, the

information embedded by the data provider should still be detected.

• Map Matching (MM). For the trajectories collected in the city

(e.g. taxi trajectory), a common preprocessing stage is mapmatching

[24]. Map matching technique maps GPS points to the points on

road networks, so the coordinates are modified without breaking

the utility. Thus the embedded information should be preserved if

the data plagiarist applies such modification.

4 IDENTITY EMBEDDING PROCESS
In this process, the identity information is inserted into trajectory

data to show the ownership of the data provider. Since many attacks

can crop, modify and shift the trajectories spatio-temporally, there

are two main challenges in embedding the identity information into



trajectory data: 1) the embedded information needs to be distributed

across the dataset in case of being lost during attacks; and 2) the

identity information needs to be embedded with a robust trajectory

attribute, to be more stable during the attack. To this end, in the

identity embedding process, two main modules are employed: 1)

trajectory partition; and 2) centroid distance based embedding.

The trajectory partition module aims to broadcast the identity

information everywhere in trajectory data. Thus, the information

can be recovered, even if the data is cropped or randomly sampled.

After partitioning trajectories, the centroid distance based em-

bedding module is employed to insert the information into each

sub-trajectory. As any potential attack needs to preserve a certain

degree of spatio-temporal property to guarantee the data utility,

centroid distance is a very stable attribute. Thus, we embed the infor-

mation by modulating the centroid distance of each sub-trajectory.

4.1 Trajectory Partition
Main Idea. In this module, each trajectory in the dataset is par-

titioned into pieces to distribute the identity information. More

specifically, the embedding information for each sub-trajectory is

generated by the identity information and the sub-trajectory index.

To guarantee the accuracy of recovered information, there should

be sufficient points in each sub-trajectory. The main insight is from

Central Limit Theorem, where more points in a polygon increase

the robustness of its centroid distance.

One intuitive way to perform trajectory partition, is to divide

them by using spatial properties, e.g., using spatial grids or R-trees.

As the distribution of points on the spatial domain is imbalanced,

partitioning by spatial grids cannot guarantee the number of points

in each sub-trajectory. As a result, some sub-trajectories may con-

tain few points, which decreases the robustness of the centroid

distance and the embedded information. Moreover, simply enlarg-

ing the partition granularity (e.g., grid size) does not address the

problem, as it decreases the number of sub-trajectories, and makes

the scheme vulnerable. On the other hand, self-adapting spatial

partition method, e.g., R-tree, also cannot be employed directly

here, as the data plagiarists can change the number of GPS points

in a trajectory by interpolation or simplification, which makes the

trajectory partition module inconsistent after being attacked.

Another intuitive way to perform the partition, is to divide the

trajectories based on the temporal domain, as in most cases, the

trajectories in the same dataset have similar sampling rate, which

makes it easier to control the number of GPS points in each sub-

trajectory. However, partitioning trajectories temporally is vulner-

able to the attack on the temporal domain, i.e., temporal shifts, as

we may not be able to generate the same sub-trajectories during

the detection process.

To this end, both spatial and temporal domains are used to over-

come the drawbacks from the spatial or temporal based partition.

The main insight here is to find a reference point for each sub-

trajectory with a reference timestamp ∆t , such that ∀i, ti − ∆t is
invariant to Temporal Shift. The spatial partition, e.g., grid, is used

here to identify the reference points, which is selected as the inter-

section points between the spatial grid and the trajectory.

Algorithm. To prevent others inverting the embedding process to

remove the embedded information, two secret keys ωs and ωt are

chosen by the data provider to partition trajectory. There are two

main steps in the trajectory partition module:

• Spatial Partition. The spatial plane is divided into uniform grids

with the size of ωs . The trajectories are partitioned spatially and

bounded by the points that intersect spatial grids.

• Temporal Partition. For the sub-trajectory inside a grid with

index (x ,y), it is further partitioned using a temporal interval

[∆t + kωt ,∆t + (k + 1)ωt ], where ∆t is the timestamp when the

object first passing the boundary of the grid and k is the temporal

index. Finally, the embedded information of sub-trajectory T
x,y
k

is generated by a hash function, i.e., hash(IDs,x ,y,k), whose
input is the combination of the identity information (both the data

provider and data user), the grid index (x ,y), and the temporal

index k of the sub-trajectory.

longitude

Index: (x,y)

Figure 6: Partition trajectory on spatio-temporal domain.

Example. Figure 6 gives an example, where the size of grid is ωs
and the temporal interval is ωt . The trajectory is firstly partitioned

spatially, as demonstrated as the line segment between the black

points that intersect the grid boundary. After that, the sub-trajectory

in the grid (x ,y) with gray color is further partitioned into {T
x,y
k }

by white points, where k is the temporal index and the timespan of

them isωt . Each of the sub-trajectory between twowhite points will
be embedded with the information generated by the hash function.

Analysis. To guarantee enough points in each sub-trajectory for

more robust centroid distance, we can select ωt according to the

sampling rate of the trajectory. To produce more sub-trajectory

for more embedding information, selecting a suitable ωs is vital

for the data provider, as more embedding information indicates

more reliability of the scheme. If ωs is set to a very small value,

the sub-trajectories produced by the spatial partition may fail to

further partition on the temporal domain. On the other hand, if ωs
is set as a very large value (e.g., ωs →∞), the trajectory is hard to

pass through the boundary of grids to find a reference timestamp

∆t for initial points in the trajectory. Both scenarios decrease the

number of sub-trajectories for embedding, which would decrease

the reliability of the ownership detection process. Detailed relations

between the selection of different ωt ,ωs and the robustness are

presented in the experiment section, i.e., Section 7.4.

4.2 Centriod Distance based Embedding
After the trajectories are partitioned into sub-trajectories, we embed

the information in this module. The module mainly contains two

procedures: 1) calculate the hash function to generate embedding

information; 2) embed information by modulating centroid distance.

Main Idea. To keep the utility of trajectory data, the capacity of

embedding information for each sub-trajectory should be limited.



Since we have many sub-trajectories (e.g., more than ten thousand

sub-trajectories in a dataset), embedding a single bit of information

into each sub-trajectory is sufficient to show the ownership of the

data provider, if most of the bits (e.g., 90% bits) can be recovered

correctly by the detection process. Moreover, the conflict prob-

lem caused by the single-bit hash function, i.e., different identity

information resulting in the same embedded information, can be

significantly alleviated because of large amounts of embedded bits.

As a result, hash(IDs,x ,y,k) returning a single bit, i.e., 0 or 1, is

used to generate the embedded bits.

Next, we mainly describe how we embed a single bit into the

centroid distance. The main insight here is to take advantages of the

data utility requirement (i.e., preservation of the spatio-temporal

properties of sub-trajectories), which is guaranteed in any type

of attack, and select a robust attribute for embedding. Thus, the

centroid distance of a sub-trajectory is a very robust attribute, as it

reflects an overall spatio-temporal distribution of the points. In this

module, we modulate the centroid distance, by scaling the distance

from each point on a trajectory to its centroid. To guarantee the

trajectory modification bound τ , the modification on the centroid

distance should be less than τ . As modification under different τ
is different, we firstly normalize the centroid distance by dividing

τ , such that the modification of it should be less than 1. Since we

embed one bit, i.e., 0 or 1, we classify centroid distance into two

categories, where the decimal part of it in [0, 0.5) indicates bit 0 and

in [0.5, 1.0) indicates bit 1. In this way, we can alter the decimal part

of the centroid distance to embed information. More specifically,

according to the embedded bit, the decimal part of centroid distance

is set as one middle value of the two scopes, i.e., 0.25 (for bit 0) or

0.75 (for bit 1), such that attacks cannot easily change the scope of

the centroid distance because of its robustness.

A five-step process is employed here: 1) calculate the embedding

bit, 2) calculate and normalize the centroid distance; 3) embed the

bit at the decimal part of the centroid distance; 4) modify points

by scaling the distance from them to the centroid; and 5) refine the

change at each point to guarantee the data utility.

Algorithm. Given an original sub-trajectory T , the first step is

calculating the embedding bit b by the hash function. Then we

calculate the centroid cT and centroid distance dT by Eq. 2 and

Eq. 3, and normalize dT by dT ← dT/τ . Thirdly, a new centroid

distance dT′ is calculated by embedding a bit b into dT :

dT′ ← ⌊dT⌋ +

{
0.25 if b = 0

0.75 if b = 1.
(4)

Fourthly, calculate the new point by p′i =
dT′
dT
(pi − cT ) + cT , such

that the new trajectory has the same centroid cT while the nor-

malized centroid distance becomes metric dT′ (the proof is simply

substituting pi for p
′
i in Eq. 2 and Eq. 3). However, |p′i − pi | may

be larger than modification bound τ . Finally set p′i =
p′i−pi
|p′i−pi |

τ + pi

when |p′i − pi | > τ , to make sure |p′i − pi | = τ .

Example. An example of the embedding algorithm is shown in

Figure 7. At first the centroid distance of the original trajectory

is 4.99. To embed 0 into this trajectory, the centroid distance is

modulated to dT′ = 4.25. Then the coordinates p′i are calculated by

Original

trajectory

Embedded

trajectory

Figure 7: Example of embedding 0 into trajectory (τ = 1).

scaling the distance from centroid topi by
dT′
dT

. Finallyp′i is modified

such that |pi − p
′
i | ≤ 1.0, and the centroid distance becomes 4.31.

Analysis. Since data plagiarists do not have the secret keys of

the trajectory partition module, they do not know the detailed

information of each sub-trajectory, such as the number of points, the

length, the shape, and etc. To ensure the data utility, data plagiarists

have two choice to modify sub-trajectories: 1) adding uniform shift

to all points while keeping the shape of the trajectory, e.g., rigid

transformation; 2) introducing random noise on each point such

that |PT′(t) − PT′′(t)| ≤ τ . However, none of these two approaches

can be used effectively against our scheme.

For the case of adding uniform shifts, the shape of a trajectory

is kept, which means the distance between any pair of points is the

same. As a result, the centroid distance does not change. For the

case of introducing random noises, the change of centroid distance

is limited as long as the data utility is preserved. We will show the

modification of centroid distance in Section 7.4.

5 OWNERSHIP DETECTION PROCESS
When a suspicious trajectory dataset is obtained by the data owner,

the ownership detection process extracts the embedded information

from each sub-trajectory and verifies it. It is essentially a reversed

procedure of the identity embedding process, which consists of

three main steps: 1) adopting a trajectory partition module to split

the trajectories with exactly the same setting as the embedding pro-

cess; 2) extracting information from the sub-trajectories; 3) judging

whether the extracted information can be matched to the embedded

one. If the embedded information is detected from a redistributed

dataset, the data provider can ask the transaction logger to verify

the identity information and then claims the ownership of the data.

In this section, we will elaborate on each module in detail.

5.1 Trajectory Partition
After acquiring the suspicious trajectory dataset, this module parti-

tions the trajectory by using the same ωs and ωt . The same index,

i.e., spatial index (x ,y) and temporal index k , can be generated

during partition process. After that, the embedded information

can be calculated in the same way by the hash function using the

spatio-temporal indexes, i.e., x ,y,k , and the identity information.

5.2 Information Extraction
This module extracts the embedded information from each sub-

trajectory by examining the centroid distance. The insight is that

the modification on centroid distance is small and stable. In the

embedding algorithm, the embedded bit is 0, when the decimal part

of a normalized centroid distance is near 0.25. On the other side,

the embedded bit is 1, when it is near 0.75. Thus, the extraction

algorithm calculates and normalizes the centroid distance dT′′ of an



attacked sub-trajectory T ′′, and then extract the bit by the formula:

b ′′ =

{
0 if dT′′ − ⌊dT′′⌋ < 0.5

1 if dT′′ − ⌊dT′′⌋ ≥ 0.5.
(5)

In Figure 7, as the centroid distance dT′′ = 4.31, the extracted bit is

0 (i.e., the same as what we embedded).

5.3 Information Matching
As the ground truth of embedded bit for each sub-trajectory can

be calculated by the identity information and its spatio-temporal

index, i.e., hash(IDs,x ,y,k) (see Section 4.2), and the extracted bit

can be calculated by Eq. 5, the last step is judging whether the

extracted bits can be matched to the ground truth.

We define a binary sequence M = ⟨0, 1, 1, 0, 1, 1, 1, ...⟩, where
the i-th number indicates whether the extracted bit of i-th sub-

trajectory is equal to the embedded bit. If there is a subsequence

M ′ = {Mk |i + 1 ≤ k ≤ j} whose length is longer than a con-

stant L and its accuracy (the number of correct bits divided by

the total number of bits) is greater than a threshold α , then those

sub-trajectories form a fragment which has a copyright issue.

If we enumerate all possible index i, j, the time complexity is

O(|M |2) which is unacceptable as datasets contain large amount of

sub-trajectories. We can further optimize it to findM ′ linearly. First,
we compute a new sequence: Si = M1 + ...+Mi . Then the accuracy

of a subsequence whose index is from i + 1 to j can be expressed

as

Sj−Si
j−i . Suppose βi = Si − αi . If i < j and βi < βj , we can find

a subsequenceM ′ that
Sj−Si
j−i =

α (j−i)+(βj−βi )
j−i > α . Therefore the

algorithm can be implemented by simply maintaining the minimum

value of the prefix of {βi }. ifmin(β1, β2, ..., βi−L−1) < βi , then we

find a subsequence with the length > L and accuracy > α .

6 OWNERSHIP TRACKING PROCESS
Traditionally, trusted third-party organizations act an intermediate

to embed information and transmit data, such that the whole pro-

cess is under supervision to prevent the scenario that the plagiarist

disavows the data transaction. However, since the great value and

crucial privacy of trajectory data, centralizing the authority and

data to a single organization is highly risky. Thus, a decentralizing

protocol is needed to supervise trajectory distribution transaction.

To deal with such problem, we employ a Transaction Logger,
which leverages the blockchain [12, 15] to record data transactions

in a decentralized mode. First, the data provider issues a transaction

with identity information, i.e., the unique certificated names of the

data provider and the user. All the names are preliminarily approved

by all users on the blockchain. Then, the data user validates the

transaction. Both the data provider and the user add their own

digital signatures to confirm the transaction. Next, the transaction is

broadcast to all nodes on the blockchain. After that, the transaction

information can be validated by signatures and then appended

to the blockchain. Finally, the data provider embeds the identity

information, i.e., IDs of data provider, user, and transaction, into

trajectory data and transmits it to the user.

As long as the blockchain is reliable, the information on it is

retrievable and unalterable. So it can be directly used to verify the

existence of transactions, and the individuals involving in them.

7 EVALUATION
7.1 Settings
7.1.1 Datasets. We employ two real-world datasets for evaluation:

• GeoLife [25–27]. It records many types of human outdoor move-

ments. GeoLife has 182 trajectories, containing 24,876,978 sampling

points. Most trajectories in GeoLife are logged as dense representa-

tion, e.g., 1-5 seconds per point.

• T-Drive. It records the movements of taxicabs in Beijing. The

dataset has 8,874 trajectories, containing 10,088,335 points in total.

Most of trajectories in T-Drive are logged as sparse representation

which has a much larger sampling rate (e.g., 10 minutes).

To keep the utility of these two datasets, the modification bound τ
is set as 1e − 5 and 1e − 4 for GeoLife and T-Drive, respectively.

7.1.2 Baseline Methods.
• Fourier Descriptor Modulation [10, 14] (FDM). It leverages
the robustness of trajectory data on the frequency domain. The

embedding process mainly consists of three steps: 1) transform

trajectory into the frequency domain; 2) embed identity information

into the Fourier descriptors; 3) transform the trajectory back to the

spatial domain. The illegal usage of trajectory data can be judged

by extracting bits from the attacked trajectory on the frequency

domain and then matching them to the embedded bits.

• Distance Modulation between Feature Points [22] (DMFP).
In the embedding process, it finds some pairs of feature points,

and embeds one bit into each of them by modulating the pairwise

distance. In the detection process, it extracts bits from the pairwise

feature points and matches them to the embeddit bits.

7.1.3 Attacks. To keep data utility, the original trajectory T , the

embedded trajectory T ′ and the attacked trajectory T ′′ satisfy:

maxt |PT (t) − PT′(t)| ≤ τ and ∃∆t ,maxt |PT′(t) − PT′′(t + ∆t)| ≤
τ (plagiarist can apply TS attack with ∆t ). To further verify the

robustness against attacks with different strength, we introduce a

coefficient χ ∈ (0, 1] to bound the attacks by ∃∆t ,maxt |PT′(t) −
PT′′(t + ∆t)| ≤ χτ . The details of the attacks are as follow:
• AGNC. For any point pi in a trajectory, first we sample a value

ci from N(µ = 0, σ 2 = 1) on [−1, 1] and a random direction di (2D
vector) with |di | = 1. Then modify pi as pi + ci χτ · di .
• RT. Rotate and shift trajectory spatially with random values.

• AGNT. For each timestamp ti , first we sample a value ci from
N(µ = 0,σ 2 = 1) on [−1, 1]. Second we calculate the maximum

modification on this timestamp: ∆ti = τ/max(
pi+1−pi
ti+1−ti ,

pi−pi−1
ti−ti−1 ).

Finally, the timestamp is set as ti + ci χ · ∆ti .
• TS. Shift all timestamps with the same random value.

• SIMP. We use Douglas-Peucker algorithm [24] to simplify a tra-

jectory {p1,p1, ...,pn }. If for all i the time synchronized Euclidean

distance from pi to the linep1pn is less than χτ , then we can replace
the original trajectory by p1pn . Otherwise, it recursively partitions

the original trajectory into two trajectories by selecting the splitting

point contributing the biggest time synchronized distance to p1pn .
• LI. We randomly add some new points by Eq. 1.

• CM. We randomly crop a fragment within a trajectory.

• Hybrid. We implement multiple attacks on the trajectory. The

order is LI, AGNC(χ ), AGNT(χ ), SIMP(χ ), TS and RT.

• DE. After embedding process, we use the same scheme to embed

another identity information by using different secret keys.



Spatial Attacks Temporal Attacks Spatio-Temporal Attacks Transformation Attacks

Scheme Dataset AGNC RT AGNT TS SIMP LI CM Hybrid DE MM

FDM

GeoLife No Yes Yes Yes No No No No No -

T-Drive Yes Yes Yes Yes No No No No No Yes

DMFP

GeoLife No Yes Yes No Yes Yes No No Yes -

T-Drive No Yes Yes No Yes Yes No No Yes No

TrajGuard GeoLife Yes Yes Yes Yes Yes Yes Yes Yes Yes -

T-Drive Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Robustness comparison for various schemes.
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Figure 8: Robustness of TrajGuard against various attacks, where χ denotes the attacking strength.

• MM. In T-Drive dataset, we use IVMM [21] to map GPS points

to the points on roads. GeoLife is not used because many types of

human movement (e.g., hiking) cannot match to road networks.

7.2 Results
7.2.1 Robustness Comparison. Since data plagiarists can apply all

types of attacks, the practicality of a scheme depends on the com-

prehensive robustness. To illustrate it, we firstly test the accuracy of

recovered bits under attacks with the same amount of modifications

as our embedding process (i.e., χ = 1). Then we set the threshold of

the accuracy as 85%, indicating whether a scheme is robust against

a certain attack (yes when accuracy is larger than 85%, otherwise

no). As shown in Table 1, TrajGuard is robust against all attacks,

while FDM and DMFP have respective limitations (the detailed

quantitative analysis is in Appendix Section B.1).

• FDM needs to transform the trajectory to frequency domain,

however, changing relations among points (e.g., resampling trajec-

tory) canmake such transformation inconsistent. Consequently, it is

vulnerable to SIMP, LI, CM, and hybrid attack. Moreover, FDM does

not introduce secret keys to prevent others inverting the embedding

process. As a result, DE can wipe out the embedded information.

• DMFP finds pairs of feature points of a trajectory, and then em-

beds information by modulating the pairwise distance. If a data

plagiarist modifies the coordinates of feature points (e.g., adding

noise), the embedded bit would be wiped out because of the tremen-

dous change of pairwise distance. Thus AGNC, hybrid attack, and

MM can make the embedded bits undetectable. Furthermore, apply-

ing TS or CM can change the pairing relationship of feature points.

Thus the detection algorithm fails under TS attack.

In summary, TrajGuard can resist the above attacks by leveraging

the stable properties of trajectory, outperforming the baselines. We

further analyze the robustness of TrajGuard in detail as follows.

7.2.2 Robustness Analysis. The robustness of TrajGuard against

AGNC, AGNT, SIMP, and hybrid attack is shown in Figure 8 (a)-

(d), where each attack can apply various attacking strength χ . The
accuracy of the recovered bits decreases slowly as the increase of χ .

Even when the attacks introduce the same strength of modifications

as the embedding process (χ = 1), the accuracy in all cases is larger

than 89%, showing strong robustness of TrajGuard. However, when

χ = 0 (no attack), the accuracy is less than 100%. The reason is that

after scaling up/down centroid distance in the embedding process

(Section 4.2), the distance between pointpi and pointp
′
i could larger

than modification bound τ . To preserve data utility, p′i is adjusted,
resulting in errors of some recovered bits.

In Figure 8 (e), We show the robustness against RT, TS, LI, CM,

DE, and MM. Specifically, RT, TS, LI, and CM cannot impact the

partition algorithm or change the centroid distance, so these attacks

do not take any effect. DE and MM can wipe out some embedded

bits, but the accuracy is still larger than 90%. Overall, TrajGuard

is robust against all these attacks. Once more, we also present the

robustness of TrajGuard against attacks which adopt much larger

modification with χ ≫ 1, as shown in Appendix Section B.2

Besides robustness, we also observe the lower accuracy on T-

Drive compared with GeoLife from Figure 8. The reason is that

some sub-trajectories in T-Drive mainly consist of consecutive fixed

points (e.g., taxi stops and waits for passengers), whose centroid

distance is extremely small (e.g., d = 0 when the taxi did not move).

It causes the arithmetic problemwhen scaling up/down the centroid

distance, leading to the failure of the embedding process.

Although the accuracy of T-Drive is lower, it decreases much

slower than that of GeoLife, showing less impact from attacks. As

the introducing noise on a sparse dataset (T-Drive) is less likely

to change the properties of trajectory, such as shape and velocity,

the centroid distance is stable. While for a dense dataset (GeoLife),

the noise can change the appearance of the trajectory (example in

Section 7.5). Since the dense dataset is more sensitive to attacks, the

accuracy decreases faster than the accuracy of the sparse dataset.

7.3 Evaluation on Efficiency
We show the efficiency of the embedding process, which are imple-

mented in Java and run on a computer with 2 Intel Xeon E5-2665

(8 cores, 16 logical processors per CPU) and 128GB RAM. Figure



9 presents the efficiency of the algorithms. In the single thread

manner, the processing time of both datasets is less than 8 seconds.

In addition, since trajectories are independent of each other, con-

current computing can enhance the efficiency. When the number

of threads is small, the increasing of threads reduces the processing

time significantly. When the number of threads becomes larger,

it gives adverse impact on the performance because of the lim-

ited computing resources. Overall, TrajGuard is efficient to protect

copyrights of trajectory data.

(a) GeoLife (b) T-Drive

# threads# threads

Figure 9: Time cost of processing trajectory data.

7.4 Parameter Settings
First we investigate how the accuracy is affected by the number

of points n within sub-trajectory, which can be controlled by ωt .
For different n, we firstly collect every n continuous points in the

original trajectories to form sub-trajectories and then randomly

embed one bit into each of them. After that, we get a list of sub-

trajectories {T ′i } with normalized centroid distance {d ′i }. Next,
Gaussian noise (with χ = 1.0) are added on all points. Finally

attacked sub-trajectories {T ′′i } are generated and the normalized

centroid distance is {d ′′i }. Figure 10 (a) depicts the statistics about
introducing error of centroid distance under different n, where the
error of i-th centroid distance is defined as: errori = |d

′
i − d

′′
i |. The

mean and standard deviation of the errors decrease rapidly as the

increase of n. As shown in Figure 10 (b), the scheme achieves good

accuracy (larger than 98%) when N ≥ 30. This guides us to choose

the secret key ωt . Suppose the sampling rate of the GPS device is

r points/seconds. To reach the high accuracy by ensuring at least

n points per sub-trajectory, we select ωt by the formula: ωt >
n
r .

Thus, according to the sampling rate of the datasets, we choose

ωt = 300(s) for GeoLife and ωt = 42, 000(s) for T-Drive.

(a) Statistics of error (b) Accuracy

Mean of error
Standard deviation of error

Figure 10: Introducing error on centroid distance and accu-
racy of extracted bits under different n.

ωs is used to control the grid size. Figure 11 illustrates the number

of sub-trajectories (embedded bits) produced by partition module

with different ωs . When ωs is too small or too big, the embedding

capacity is limited since many points are useless in the trajectory

partition module. To embed more information, we set ωs = 2 and

ωs = 1 for GeoLife and T-Drive, respectively.
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Figure 11: Number of embedding bits under different ωs .

7.5 Case Study
A real-world example is visualized in Figure 12, showing how Tra-

jGuard protects copyrights of trajectory data. The modification

bound τ is 3e − 4. We embed 6 bits of information into 6 sub-

trajectories respectively, as shown in Figure 12 (c)-(h). The original

trajectory and the embedded trajectory are almost overlapping, so

the data utility (landmarks, routes, etc.) is preserved.

After embedding the bits, the hybrid attack is implemented to

modify the embedded trajectory. Firstly, we randomly add 3 points

between every pair of adjacent points by interpolation. Then, we

apply AGNC with χ = 1.6. Finally, we simplify the trajectory

by SIMP(χ = 1.6). Note that the strength of the attack is much

larger than the strength of the embedding process. As the red lines

show in Figure 12, the modification introduces large errors which

even changes the routes and landmarks of the original trajectory.

However, due to the robustness of the centroid distance, only the

third bit cannot be recovered correctly, which shows the advantages

and practicality of the proposed scheme.

8 RELATEDWORK
We study several categories of related works for protecting tra-

jectory data, positioning our work in the research community.

Schemes based on spatial domain. [8] embeds identity infor-

mation by modifying the distance between some pairs of points.

[22] firstly select some feature points which can survive from the

simplification and cropping. Then it embeds identity information

into the distance between those feature points.

Compared with the above schemes, TrajGuard utilizes the sta-

ble properties of trajectory on both spatial and temporal domains,

such that it can significantly improve the robustness against sim-

plification, interpolation, and noise addition. Moreover, TrajGuard

is robust against some complex attacks including hybrid attack,

double embedding, and map matching.

Schemes based on frequency domain. [9, 10] transform data

into the frequency domain and embed bits by modifying the magni-

tude of Fourier descriptors. This type of schemes is robust against

geometry transformations and noise addition. [10] also consid-

ers the down-sampling and up-sampling attacks which sample

the points with equidistant index. However, due to the limitation

of Fourier descriptors, once the index is changed arbitrarily (e.g.

adding points or removing points at some timestamps), the embed-

ded information cannot be recovered.

In contrast to the schemes on frequency domain, TrajGuard mod-

els the curve of trajectories, such that it can deal with attacks which

resamples the trajectories, e.g., simplification and interpolation.



Original trajectory Embedded Trajectory Attacked Trajectory

(a) Original Trajectory &

 Embedded Trajectory
(b) Attacked Trajectory (c) Sub-trajectory 1 (d) Sub-trajectory 2

(e) Sub-trajectory 3 (f) Sub-trajectory 4 (g) Sub-trajectory 5 (h) Sub-trajectory 6

Figure 12: Example of the proposed scheme against hybrid attack (χ = 1.6). For the sub-trajectories shown in the sub-figure
(c)-(h), the change of the centroid distance after embedding and attacking are shown as follows: (c) 4.20 → 4.74 → 4.83, (d)
4.87→ 4.26→ 4.29, (e) 1.83→ 1.31→ 1.51, (f) 3.52→ 3.74→ 3.79, (g) 1.69→ 1.25→ 1.43, (h) 4.12→ 4.70→ 4.65. The embedded
bits are 1, 0, 0, 1, 0, 1 respectively. While the extracted bits are 1, 0, 1, 1, 0, 1. Only the third bit cannot be recovered correctly.

9 CONCLUSION
In this paper, we propose a novel and comprehensive scheme to

protect the copyrights of trajectory data. The scheme embeds the

identity information, while preserving the data utility. By using

the sub-trajectories and their centroid distance for embedding, our

proposed trajectory copyright protection scheme is robust against

a various and comprehensive set of attacks. Finally, by using the

blockchain to record the data distribution transactions, the proposed

scheme works without the third party to monitor and store the

original trajectory data. The effectiveness of our proposed scheme is

evaluated extensively based on the two real-world datasets: GeoLife

and T-Drive. In the experiments, more than 89% of the embedded

information are recovered correctly against any attacks, which

outperforms all the baseline solutions.
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A SYSTEM IMPLEMENTATION
In this section, we outline the system implementations, and analyze

complexity of algorithms.

The implementation of data distribution procedure is shown in

Algorithm 1. It mainly consists of three stages: transaction genera-

tion (line 1-3), identity information embedding (line 4-11), and data

transmission (line 12-13). The bottleneck of the efficiency is the

identity information embedding process. In this process, the time

complexity of trajectory partition function and the bit embedding

function are linear corresponding to the number of points. Since

each point in the original trajectory is processed only once by tra-

jectory partition function and bit embedding function, the overall

time complexity is O(N ) where N is the total number of points in

trajectory dataset. In addition, as trajectories are independent from

each other, we can apply parallel computing to further accelerate

the algorithm.

Algorithm 1: Implementation of a data distribution proce-

dure, that a data provider A distributes a trajectory dataset

{T1, ...,Tm } to a user B.
1 A issues a transaction with IDA and IDB, and broadcast the

transaction information to the blockchain

2 B confirms the transaction, and broadcast it to the blockchain

3 The transaction is appended to the blockchain, and A receives a

transaction ID from the blockchain, denoted as IDTrans

4 // A embeds {IDA, IDB, IDTrans } into trajectory data

5 for i ∈ {1, 2, ...,m } do
6 T

(1)

i , ..., T
(mi )
i = trajectory_partition(Ti )

7 for j ∈ {1, 2, ...,mi } do
8 get the index x, y, k of T

(j )
i

9 get the embedded bit by hash(IDA, IDB, IDTrans, x, y, k )

10 embed the bit into T
(j )
i , and get the embedded T′

(j )
i

11 get embedded T′i by concatenating {T′
(1)

i , ..., T′
(mi )
i }

12 A sends embedded dataset {T′1, ..., T
′
m } to B

13 B confirms the reception and broadcast it to the blockchain

Algorithm 2: Implementation of ownership detection, that

the data provider A validates whether the dataset {T1, ...,Tm }

contains identity information {IDA, IDB, IDTrans} by parameter

L and α introduced in Section 5.3

1 for i ∈ {1, 2, ...,m } do
2 T

(1)

i , ..., T
(mi )
i = trajectory_partition(Ti )

3 S0 = β0 = 0

4 for j ∈ {1, 2, ...,mi } do
5 get the index x, y, k of T

(j )
i

6 get the embedded bit b by hash(IDA, IDB, IDTrans, x, y, k )

7 extract one bit b′ from T(j )i
8 Sj = Sj−1 + 1b==b′
9 βj = Sj − α j

10 if min(β1, ..., βj−L−1) < βj then
11 Claim the ownership if {IDA, IDB, IDTrans } is on the

blockchain

The implementation of ownership detection is shown in Algo-

rithm 2. Being similar to the data distribution procedure, each point

is processed only once by trajectory partition function and bit

extraction function, and both functions are linear. Thus the time

complexity of ownership detection process is O(N ).

B DETAILED EXPERIMENT RESULTS
B.1 Quantitative Comparison with Baselines
In this part, we make quantitative comparison for different schemes.

Comparison with FDM: As shown in Figure 13, the robustness

of FDM against AGNC goes down rapidly as the increase of χ in

GeoLife dataset. While in sparse dataset T-Drive, it gets the best

accuracy. The reason is that FDM directly embeds the identity in-

formation into the whole trajectory on frequency domain, so the

introducing error is not easy to control. Especially in the dense

dataset, it will introduce larger error, resulting in the limitation

of embedding strength. In contrast, TrajGurad partitions the tra-

jectory into small pieces each of which contains one bit. Thus the

introducing error is controllable and the accuracy is guaranteed.

Similarly, with respect to map matching shown in Table 2, the accu-

racy of FDM is lower than TrajGuard with the same reason. Being

different, RT does not change the magnitude of Fourier descriptor

and distance between points, so both of FDM and TrajGuard are

robust against RT (in Table 2).
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Figure 13: AGNC with different attacking strength χ .

Table 2: Robustness against RT, TS, LI, CM, DE, and MM,
where N/Ameans the scheme is vulnerable to the attack, i.e.,
the accuracy of the recovered bits is less than 55%.

Scheme Dataset RT TS LI CM DE MM

FDM

GeoLife 100% 100% N/A N/A N/A -

T-Drive 100% 100% N/A N/A N/A 85.7%

DMFP

GeoLife 100% N/A 100% N/A 93.3% -

T-Drive 100% N/A 100% N/A 94.9% 62.3%

Traj- GeoLife 98.6% 98.6% 98.6% 98.6% 91.4% -

Guard T-Drive 90% 90% 90% 90% 89.8 90.1%

As for the attacks on temporal domain, i.e., AGNT and TS, be-

cause FDM does not consider the temporal information, these at-

tacks cannot take effect (as shown in Figure 14 and Table 2).

For the attacks which change the set of points, i.e., SIMP, LI,

and CM, FDM fails because the Fourier descriptors become totally

different. While TrajGuard utilizes the centroid distance which

considers all estimated points on trajectory. So these attacks can

be handled by TrajGuard.
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Figure 16: Hybrid attack with different attacking strength χ .

Besides, DE is also not supported by FDM because data plagiarist

can directly embed his identity information into the trajectory to

modify Fourier descriptors. In contrast, as data plagiarists do not

know how data provider partition the sub-trajectories in TrajGuard,

this attack can be handled.
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Figure 14: AGNT with different attacking strength χ .

Comparison with DMFP: First, we discuss the robustness of

DMFP against spatial attacks. Since DMFP simply embeds bits by

modifying some pairs of feature points, it is vulnerable to the ad-

ditive noise on coordinate, resulting in the low robustness against

AGNC and MM, as shown in Figure 13 and Table 2. Whereas RT

does not change the distance between points, so DMFP is robust

against RT (in Table 2).

For AGNT on temporal domain, as both the pairing relations of

feature points and the pairwise distance are not changed, AGNT

cannot take effect (as shown in Figure 14). While for TS, the times-

tamps are shifted, which changes the selected feature points, so

DMFP is vulnerable under this attack (as shown in Table 2).

For the attacks which change the set of points, DMFP is robust

against SIMP and LI (in Table 2 and Figure 15), because the feature

point selected by DMFP is those points which furthest away from

the reference lines, most of the feature points cannot be removed

(otherwise the utility is not preserved). However, CM can crop or

add fragments of trajectories, which can break the feature point

selection of DMFP. Thus DMFP is not robust against CM.
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Figure 15: SIMP with different attacking strength χ .

At last, as DMFP also applies secret keys to find feature points

such that data plagiarists do not know those points, DE can be

handled by DMFP.

Overall Comparison:As what we discussed above, both FDM and

DMFP have their own limitations, while TrajGuard is robust against

all these attacks, that we achieve over 89% accuracy in all scenarios.

In addition, we plot the scheme performance under hybrid attacks

shown in Figure 16, showing comprehensive robustness of Traj-

Guard beyond baselines. Thus TrajGuard is a more practical scheme

for trajectory copyright protection in the real world.

B.2 Advanced Robustness of TrajGuard
We also show the robustness of TrajGuard in extreme cases. Fig-

ure 17 illustrates the robustness against attacks which introduce

much larger modification than the embedding process, i.e., χ ≫ 1.

When data plagiarists apply attacks with bound 4τ , which totally

change the appearance of trajectories, more than 64% bits can still

be correctly recovered. Since the accuracy of randomly guessing

the embedded bits is 50%, TrajGuard still shows a certain degree of

robustness in such cases.
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Figure 17: Advanced robustness of TrajGuard.
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