
1

Efficient Path Query Processing over Massive
Trajectories on the Cloud

Ruiyuan Li, Sijie Ruan, Jie Bao, Member, IEEE , Yanhua Li, Senior Member, IEEE ,
Yingcai Wu, Member, IEEE , Liang Hong, Member, IEEE , and Yu Zheng, Senior Member, IEEE

Abstract—A path query aims to find trajectories passing a given sequence of connected road segments within a time period. It is very
useful in many urban applications: 1) traffic modeling, 2) frequent path mining, 3) intersection coordination, and 4) traffic anomaly
detection. Existing solutions for path query processing are implemented based on single machines, which are not efficient for the
following tasks: 1) indexing large-scale historical data; 2) handling real-time trajectory updates; and 3) processing concurrent path
queries from urban data mining applications. In this paper, we design and implement a cloud-based path query processing framework
based on Microsoft Azure. We modify existing suffix tree structure to index trajectories using Azure Table. The proposed system
consists of two main parts: 1) back-end processing, which performs pre-processing (i.e., parsing and map-matching) and index building
tasks with a distributed computing platform (i.e., Storm) used to efficiently handle massive real-time trajectory updates; and 2) query
processing, which answers path queries using Azure Storm to improve efficiency and overcome I/O bottleneck. Extensive experiments
are performed based on the real-time taxi trajectories from Guiyang City, the capital of Guizhou Province, China to confirm the system
efficiency. We also demonstrate a real deployed traffic analysis system based on our query processing framework.

Index Terms—Trajectory Query Processing, Spatio-temporal Data Management, Distributed Computing, Cloud Computing.

F

1 INTRODUCTION

A Path query aims to extract qualified trajectories that
have passed a user-specified path (i.e., a sequence of

connected edges) within a temporal period. Figure 1a gives
an example, where a user retrieves the trajectories that have
passed edges (e1 → e2 → e3), i.e., the red dotted lines
during a time interval (10:00 to 11:00), and the qualified
trajectories are returned as the colorful lines.

Many urban applications rely heavily on path queries:
1) traffic speed modeling [1, 2], where extracted trajectories
can be used to estimate the travel time/speed of a given
path; 2) path mining [3–5], where qualified trajectories can
be used for route recommendations; 3) intersection coordi-
nation [6], where the trajectories can be used for traffic light
coordination; and 4) traffic anomaly detection [7, 8], where
we can find anomalous vehicles.

The most straightforward way to tackle this problem is
to retrieve all trajectory IDs from an inverted index, i.e.,
indexing trajectory IDs based on road segment IDs, and
then perform a join operation to select qualified results. This
naive solution can be extremely inefficient, as it not only

• R.Y. Li and S.J. Ruan are with the School of Computer Science and Tech-
nology, Xidian University, China. They are now interns at JD Intelligent
City Research and JD Urban Computing Business Unit. Partial work of
this paper was done when R.Y. Li and S.J. Ruan were interns at Microsoft
Research Asia. E-mail: {ruiyuan.li, ruansijie}@jd.com

• J. Bao and Y. Zheng are with JD Intelligent City Research and JD
Urban Computing Business Unit. Y. Zheng is also affiliated with School
of Computer Science and Technology, Xidian University. Jie Bao is
the correspondence author of this paper. E-mail: baojie@jd.com and
msyuzheng@outlook.com

• Y.H. Li is with the Computer Science Department, Worcester Polytechnic
Institute, Worcester, MA, USA. E-mail: yli15@wpi.edu

• Y.C. Wu is with the State Key Lab of CAD & CG, Zhejiang University,
Zhejiang, China. E-mail: ycwu@cad.zju.edu.cn

• L. Hong is with the School of Information Management, Wuhan Univer-
sity, Wuhan, China. E-mail: hong@whu.edu.cn

Path Query
(e1-e2-e3,

10:00-11:00)

C
lo

u
d

P
la

tf
or

m

Azure Table Azure Blob

ID-Temporal Index

Query API

Azure Storm

Suffix Index

In
d

ex
es

root

e1 e7

e2

e3 e4

e2

e4

e3

e9...
...

...
e3

Urban Applications

Traffic
Modeling

Frequent
Path Mining

Anomaly
Detection

(a) Example of a Path Query. (b) Overview of Proposed System
Massive Trajectory Dataset

...

Results

e1 e2

e3

Fig. 1: Motivating Examples.

needs to scan a large number of candidate trajectories, but
also performs join operations that can be very costly. To im-
prove the query efficiency, advanced solutions, e.g., [9, 10],
are proposed to use efficient arithmetic operations to verify
paths and avoid join operations. There are also solutions,
e.g., [1, 11], that take advantage of suffix tree index to speed
up join operations. However, these solutions still suffer
from three main drawbacks: 1) they still need to maintain
a trajectory index (e.g., inverted list or suffix tree) in the
memory, which is unrealistic when trajectory data is huge,
e.g., millions of trajectories over several years; 2) all of them
are implemented based on a single machine, which incurs
a performance bottleneck for answering a large number of
concurrent path queries from data mining applications; and
3) none of existing solutions is efficient to handle large-scale
trajectory updates, which prevents them from providing
real-time path query/analysis services.

In this paper, we build a cloud-based path query pro-
cessing system on Microsoft Azure, which extends from
our previous work [12]. Figure 1b gives an overview of
our system, where we build a layer based on Azure com-
puting and storage components to support both real-time
trajectory updates and path queries. A distributed streaming

2

computing platform, i.e., Azure Storm, is extensively used
to overcome the I/O bottleneck both in index building and
query processing.

The main idea in our system is to modify the traditional
suffix tree index: 1) we set a max height to limit the size
of suffix tree index; 2) we keep an hourly count on each
suffix record to indicate data distribution; and 3) we store
detailed suffix records on Azure Table to enable parallel I/O
access. To answer path queries with a limited height suffix
tree index, we propose different heuristics to decompose
querying paths, retrieve suffix records from Azure Table,
and efficiently reconstruct results.

Our system consists of two main parts: 1) back-end part,
which receives trajectory updates, and performs trajectory
parsing and map-matching tasks. After that, it updates
the suffix tree index, stores and organizes trajectory data
in Azure Table; and 2) front-end part, which receives path
queries and utilizes Azure Storm to efficiently retrieve query
results. Our main contributions are summarized as follows:

• We build a holistic system based on the cloud com-
puting platform, i.e., Microsoft Azure, to efficiently answer
path queries over massive trajectory dataset.
• We develop a table-based suffix tree index, with max

height, hourly count and table storage to overcome the chal-
lenges from indexing and querying massive historical tra-
jectory data.
• We propose an efficient indexing algorithm based on

Azure Storm to distribute system I/O overhead and to
handle real-time trajectory updates.
• We propose a Storm topology to answer path queries

both individually and concurrently. To further reduce re-
sponse time, different heuristic methods are proposed.
• Extensive experiments are conducted based on real taxi

trajectories from Guiyang, the capital of Guizhou Province,
China, to demonstrate the efficiency of our system. We also
demonstrate a real traffic analysis system based on the query
processing system [13].

The remainder of this paper is organized as follows:
Section 2 introduces preliminaries, formal problem defini-
tion and system overview. Section 3 presents pre-processing
module. Index building module is presented in Section 4.
Section 5 describes the path query processing module.
Experimental results and a demonstration traffic analysis
system are given in Section 6. The related works are sum-
marized in Section 8. Finally, Section 9 concludes the paper.

2 PRELIMINARY

In this section, we first introduce some basic concepts
and Azure components used in the paper. After that, we
provide a formal definition of trajectory path query and its
extensions. Finally, we provide an overview of our cloud-
based path query processing system.

2.1 Basic Concepts
Definition 1. (GPS points) A GPS point pi contains two
pieces of information: 1) spatio-temporal information, which
includes a pair of latitude and longitude coordinates, and
a timestamp; and 2) attributes, which may include speed,

p1 p2

p3

p4

p5

e1

e2

e3

p1

p2

p5

Spatio-temporal
Properties

lat2 lng2 t2

lat1 lng1 t1

lat5 lng5 t5

Attributes

speed2 dir2

speed1 dir1

speed5 dir5

… … … … …

(a) An Example of Trajectories. (b) Trajectory Map-Matching.

… …

Fig. 2: An Example of Trajectory Data.

direction, and any other information obtained by sensors.
An entry in Figure 2a is an example of GPS points, and the
green dots in Figure 2b demonstrate GPS point projections
on geographic space.

Definition 2. (GPS Trajectory) A GPS trajectory τ contains a
list of GPS points ordered by their timestamps. As shown in
Figure 2b, on a two-dimensional plane, we can sequentially
connect these GPS points into a curve based on their time
serials to form a trajectory τ = {p1 → p2 → ...→ p5}.

Definition 3. (Road Network) A road network can be
viewed as a directed graph G = (V,E), where E is a set
of road segments and V represents intersections.

Definition 4. (Map-Matched Trajectory) The raw GPS
points are mapped onto their corresponding road network.
Figure 2b gives a map-matching example, where the green
dots (GPS points) are projected onto corresponding road
segments (in red). Thus, the trajectory is converted to
Tr = {(e1, t1) → (e2, t2) → (e3, t3)}, where ei is the edge
ID and ti is corresponding timestamp. More details about
converting a GPS trajectory to a map-matched trajectory can
be found in [14].

Definition 5. (Path) A path is a set of connected road
segments P = {ei → ej , ...,→ ek}, where the order of
edges indicates the travel sequence. The consecutive road
segments in a path should be connected on the road network
G. We define the number of edges in a path as its length.
For example, the red lines in Figure 2b form a path of
e1 → e2 → e3 with a length of 3.

2.2 Azure Preliminary

We give some brief descriptions here to introduce the main
components of Microsoft Azure, which are used in our
system: 1) Azure Storage, and 2) Azure HDinsight.

2.2.1 Azure Storage
Azure Storage is a massively scalable cloud storage solu-
tion1 with many different components, e.g., Azure Blob,
Azure Table, Azure Queue, and Azure Redis.
Azure Blob. Blob (A Binary Large Object) is a collection of
binary data stored as a single entity in the Azure storage
system. It is equivalent to binary files in a conventional file
system. As it can be loaded onto the memory very efficiently,
Azure Blob is used to store the index files (i.e. hourly counts)
in our system.
Azure Table. Azure Table is a NoSQL database in Azure.
Table storage is a key/attribute store with a schema-less

1. https://docs.microsoft.com/en-us/azure/storage/

3

design. Each storage account can have unlimited number
of tables distinguished by table names. Each table entity
is identified by two keys: PartitionKey and RowKey.
Table entities with the same PartitionKey are stored in
the same physical location and can be operated in a batch.
Azure Table is very efficient in answering the range queries
of RowKey within the same PartitionKey. To this end,
Azure Table is used extensively to store trajectories (more
details in [15]).
Azure Queue. Azure Queue provides a reliable messaging
solution for asynchronous communication between differ-
ent application components. In our system, Azure Queue is
used as a API channel, which receives/answers API calls
from different users/applications.
Azure Redis. Azure Redis, based on the popular open-
source Redis cache2, is an advanced in-memory key-value
store. It supports many data structures such as strings,
hashes, lists, sets, and sorted sets. To ensure data consis-
tency, Redis supports a set of atomic operations on these
data types. As Azure Redis stores data in the memory, it is
a good option to put frequently accessed and shared data in
our system, e.g., intermediate processed trajectory data and
path query results.

2.2.2 Azure HDinsight.
Azure HDinsight3 is a distributed computing component
in Microsoft Azure to perform large-scale data processing,
which includes Azure Hadoop, Azure Spark and Azure
Storm. To cope with real-time trajectory updates, we use
Azure Storm in our system, for its abilities to perform real-
time streaming data and online services.
Azure Storm. Azure Storm is a distributed, real-time event
processing solution for large, fast streams of data. It is a
good choice for processing real-time data and providing on-
line services. There are two types of components in a Storm
system: 1) Spout, which continuously reads updates/new
requests from a message queue (e.g., Azure Queue), and
distributes them; and 2) Bolt, which is a processing unit.
In a Storm program, there will be different kinds of bolts
with different functions. Bolts get tasks from spouts and
are connected to each other based on the design of users,
forming a Storm Topology. In our system, we adopt Azure
Storm to perform index building and path query processing
to overcome I/O issues.

2.3 Problem Definition

Path Query. The path query we address in this paper
can be formalized as follows: given a path with a list
of connected edges P = {ei, ej , ..., ek}, a temporal range
with a start time Ts and an end time Te, and a map-
matched trajectory dataset T = {Tr1, T r2, ..., T rn}, we
want to find all sub-trajectories of Tri in T , where Tri
passed the path P within the given temporal period, i.e.,
{(ei, ti), (ej , tj), ..., (ek, tk)} ∈ Tri and ti ≥ Ts & tk ≤ Te.
The objective here is to improve efficiency.
Extension: Partial Path Query. We can consider the
path query as a building block to answer a complex

2. https://azure.microsoft.com/en-us/services/cache/
3. https://azure.microsoft.com/en-us/services/hdinsight/

partial path query, where the path in a query is not
fully connected, but with a set of disconnected road
segments. For example, a partial query path P =
{(e1, e2, e3); (ei, ei+1, ei+2); (ej , ej+1, ej+2)} contains three
sets of road segments (grouped by the parenthesis), where
the edges in the same group are connected.

2.4 System Overview

Figure 3 gives an overview of our cloud-based path query
processing system, which includes two main components:

GPS Data
Updates

Map-Matching

Storing

Pre-Processing

Suffix Tree
Index Building
Based on Storm

Index Building

Query Processor

Storm-based
Path Query
Processing

Path Query
Results

B
ac

k
-e

n
d

P

ro
ce

ss
in

g
S

er
vi

ce

P
ro

v
id

in
g

Parsing

Suffix-tree Index
root

e1 e7

e2

e3 e5

e3

e4

e3

e9...

... ...

... ...

Fig. 3: System Overview.

Back-end Processing. This component, running at the back-
end of our system, receives GPS updates and builds tra-
jectory index, as illustrated in the upper part of Figure 3.
This component contains two modules: 1) Pre-Processing,
which gets raw GPS updates, and performs parsing, map-
matching, and storing tasks (Detailed in Section 3); and
2) Index Building, which builds suffix tree index to speed
up path query processing (Detailed in Section 4).
Service Providing. This is a front-end processing compo-
nent that answers path queries, as illustrated in the bottom
part of Figure 3. The main module is Query Processor, which
takes advantage of the suffix tree index and employs the
Storm parallel computing platform to answer both path
queries and partial queries in an efficient way (Detailed in
Section 5).

3 TRAJECTORY PRE-PROCESSING

In this section, we describe the main steps in pre-
processing module, as shown in Figure 4, which consists of
three main steps:

Parse

Map-matched
Trajectories

GPS
Points

GPS
Trajectories

Map
Match Store

Azure
Storage

Azure Table

Fig. 4: Overview of Trajectory Pre-processing Module.

Step 1. Trajectory Parsing. As illustrated in Figure 4, in
order to support online query processing, our system con-
tinuously gets GPS updates from environment, e.g., taxis or
personal vehicles. The first step filters noisy GPS points, and

4

groups GPS points based on their IDs (e.g., plate numbers).
We use a heuristics-based outlier detection method in [16].
Step 2. Map-Matching. In this step, the system takes
cleaned trajectories and road networks, and then maps each
GPS point onto its corresponding road segment. In this
step, we use an interactive-voting based map matching-
algorithm [14] to perform the map-matching task. Moreover,
to support real-time services, we deploy the map-matching
algorithm in Storm to expedite the process, with more
details can be found in our previous work [15].
Step 3. Storing. As depicted in Figure 4, after performing
the map-matching task, we store the processed trajectories
in two locations: 1) Azure Table, where each trajectory is
distinguished by its ID (as the table name). The temporal
ranges are used as PartitionKey and exact timestamps
are used as RowKey. The detailed design of keys can be
found in our previous work [17]. In this way, we can
efficiently answer ID-temporal queries (i.e., finding the sub-
trajectories of a specified moving object within a given time
period); and 2) Azure Redis, which is used to cache the map-
matched trajectory data for the index building module.

4 INDEX BUILDING

In this section, we first present the existing suffix tree
index structure, which is widely used to answer trajectory
path queries. After that, we highlight the major drawbacks
if we adopt original suffix tree index directly, and present
our table-based suffix tree index. Then, we develop a basic
procedure to build table-based suffix tree index. Finally,
we describe our Strom-based implementation for building
table-based suffix tree index to overcome the drawbacks in
the basic index building algorithm.

4.1 Index Structure
4.1.1 Original Suffix Tree Index
Suffix tree index is originally used to index strings [18],
which improves the performance of string suffix search.
In the case of trajectory data management, a map-matched
trajectory can be considered as a string, where each edge ID
is equivalent to a character and a path query can be mapped
as a string suffix search (i.e., searching by a sequence of edge
IDs is similar to searching by a sequence of characters). It has
been demonstrated in many existing systems, e.g., [1, 11],
that suffix tree index is a very efficient solution to answer
path queries.

Figure 5 gives an example of original suffix tree in-
dex structure. In this example, a trajectory Tr1 passes
four edges (i.e., e1, e2, e3 and e4). As a result, four
suffixes are generated based on this trajectory, i.e.,
(e1, e2, e3, e4); (e2, e3, e4); (e3, e4); (e4). Then, all four suf-
fixes are inserted into the corresponding positions (marked
in shade) on the suffix tree index.

With the suffix tree index, query processing becomes
straightforward: when a user asks for the trajectories that
passed a path, the system just traverses to the correspond-
ing node in the suffix tree index and retrieves all entries
associated with it. For example, if a user issues a path query
with P = {e1, e2}, we can start from the root, and traverse
through node e1 and e2. All the items in orange color are
the query results, i.e., sub-trajectories of Tr1 and Tr2.

e1

e2

e3

e4

e2

e3

e4

e3

e4

e4

Tr1,...

e4

Tr1,...

Tr1,...

Tr1,...

Tr2,...

e4

Tr2,...

Tr2,...

Tr1,...

Tr1,...

Tr1,...

Tr1: (e1,10:31)→(e2,10:32)→(e3,10:35)→(e4,10:38)
Tr2: (e1,10:35)→(e2,10:37)→(e4,10:38)

Root

Tr1,...

Tr2,...
Tr1,10:31→10:31

Tr2,10:35→10:35

Tr1,10:31→10:32

Tr2,10:35→10:37

… … …

…

Fig. 5: Original Suffix Tree Index.

However, as illustrated in Figure 5, the original suffix
tree index needs to take a lot of space to store the informa-
tion of trajectory suffixes, as it generates a lot of suffixes
even for one trajectory. Moreover, the size of suffix tree
index increases significantly when the trajectory dataset is
huge, e.g., millions of historical trajectories. Furthermore,
the original suffix tree index is not optimized for temporal
predicate. Retrieving the qualified trajectories within a given
temporal period based on the original suffix tree index
incurs significant I/O overhead in accessing a lot of dis-
qualified data. As a result, existing systems [1, 11] only use
the suffix tree index to hold the most frequent or most recent
trajectories, and cannot support trajectory path queries over
entire historical dataset or with a temporal constraint.

4.1.2 Table-based Suffix Tree Index
To efficiently support trajectory path queries at large-scale
trajectories, i.e., with months and years of trajectory data,
we modify the original suffix tree index. Figure 6 gives
an example of our proposed table-based suffix tree index,
which consists of two main components: 1) suffix tree index,
which includes a tree structure and a set of statistics that
are stored in Azure Blob and loaded onto memory during
query processing; and 2) suffix records, which store actual
trajectories organized based on their suffixes in Azure Table.
There are three changes comparing to the traditional suffix
tree index:

e1

e2

e3

e2

e3

e4

e3

e4

e4

e4

e4

... ...

...

M
ax
H
ei
g
h
t

TableName: e3e4

Root

Suffix
Tree

Suffix
Records

HourlyCount

11:00-12:00 : 0

10:00-11:00 : 1

… … … …

Temporal
Period : Count

...

...

... ...

ParitionKey RowKey StartTime EndTime PlateID

2017113010
201711301035
02189_guiaxx

guiaxx

...............

2017-11-30
10:35:02

2017-11-30
10:38:05

Fig. 6: Table-based Suffix Tree Index.

•Max Height. We set a max height H to limit the total size
of a suffix tree. In other words, the suffix tree only holds
the information of suffixes with a length of no more than

5

H . In this way, we can guarantee that the index can fit in
the memory regardless of the size of trajectory data, as it is
bounded by the number of sub-paths with max height edges.
Take Figure 6 as an example, the max height of suffix tree
index is three. Choosing a suitable max height in a system is a
design trade-off: if the max height is small, it favors the index
building, as fewer suffixes are generated. However, it hurts
the efficiency in query processing, as more join operations
and data accesses are introduced in the query processing
phase (more details in Section 6).

• Hourly Count. In each node of suffix tree, we maintain
a dictionary, where we divide a day into 24 hours and store
the average number of trajectories passing the node (i.e., the
sequence of edges) in each hour. In the upper left of Figure 6,
we present an example for the node e1e2 (marked in shade).
Hourly count serves as a hint for query processing module
to make an efficient and smart query plan, with which less
data will be accessed (see Section 5.1.1).

• Table Storage. As demonstrated in Figure 6, each node
also keeps a pointer to an Azure table, where the actual
trajectory data is stored. The name of a table is the sub-
path ID (table e3e4 in the example). The PartitionKey of
Azure Table is the temporal range, e.g., by hour in the figure,
and the RowKey is the timestamp with trajectory ID, which
can avoid key conflicts in a table when two trajectories of
different moving objects are generated at the same time. In
this way, trajectories passing the same path within the same
temporal period are stored in the same Azure Table partition
for more efficient access.

Essentially, we store an extra and re-organized copy of
trajectory dataset. The main intuition is to store trajectory
data in the same table partition, if they passed the same
path within the same temporal period. It is different from
traditional indexing methods, where the index just keeps
pointers to actual records. However, it is a more economic
and efficient choice in Azure to store an extra copy, as the
storage cost is much cheaper than the computing cost, e.g.,
it is only about 10 USD per 1TB/month for Azure Storage4.

4.2 Index Construction

4.2.1 Table-based Suffix Tree Indexing

There are three main steps in constructing a table-based
suffix tree index:

Step 1. Suffix Generation. In this step, our system generates
suffixes with a length of no more than H from original
trajectories. Essentially, we truncate raw trajectories using
a sliding window with a window size of H and a step size
of one. For example, if we set the max height H as two, the
map-matched trajectory Tr: e1 → e2 → e3 will be broken
into five sub-trajectories: e1, e2, e3, e1 → e2, and e2 → e3.

Step 2. Index Update. In this step, we group the suffixes
generated by the previous step and update the hourly count
at each node of suffix tree index. For example, we group
all sub-trajectories that passed e1 → e2 → e3 within 10:00
PM to 11:00 PM, and then update the hourly count at the

4. https://azure.microsoft.com/en-us/pricing/details/storage/

corresponding node (i.e., 10:00 PM-11:00 PM of e1e2e3) in
the index.
Step 3. Record Insertion. In this step, we insert the
grouped sub-trajectories into Azure Table. Sub-trajectories
with the same suffix are inserted to the same table, and
sub-trajectories generated within the same time period are
inserted into the same partition.

The aforementioned steps are very straightforward.
However, there are some potential performance bottlenecks:
1) generating trajectory suffixes takes a lot of time, when the
trajectory data is huge (i.e., with a large number of moving
objects or a long time period); 2) the volume of generated
suffix data can be huge, as it essentially creates H times
more data than the map-matched trajectories; 3) it generates
a large number of different suffixes, where each of them
incurs one Azure Table insertion. The insertions to different
tables/partitions can only be performed individually, which
introduces significant I/O overhead.

4.2.2 Storm-based Indexing Implementation
To overcome the bottlenecks in building a table-based suffix
tree index, we develop an index building process based on
a distributed streaming environment, i.e., Azure Storm. It is
a quite intuitive choice, as: 1) Storm is natural to support
continuous trajectories updates that have a lot of similarity
with streaming data; 2) it is more efficient to distribute suffix
generation operations on multiple computing nodes; 3) with
more nodes in Storm, we can overcome the system I/O
bottleneck by writing data in parallel to Azure Table.

Shuffle-
Grouping

GlobalGrouping

Spout

Map-matched
TrajectoriesSuffix

Generator

…

…
FieldGrouping

Suffix
Generator

Suffix Records

…

Table Record
Inserter

Table Record
Inserter

Suffix Records

…

Suffix Tree

…

Index
Reporter

Fig. 7: Overview of Storm Indexing Topology.

Figure 7 gives an overview of the Storm-based Indexing
Topology, where the Storm topology is essentially a comput-
ing network with four types of components:

• Spout. The spout takes map-matched trajectories from
Azure Redis, and distributes them to different Suffix Genera-
tor Bolts using ShuffleGrouping mechanism, i.e., random
assignment, to achieve a workload balance (shown as blue
lines).
• Suffix Generator Bolt. This bolt breaks map-matched

trajectories into suffixes with the maximum length of H .
Then, the generated suffixes are distributed to two loca-
tions: 1) Table Record Inserter Bolt, using FieldGrouping
mechanism (as green arrows), i.e., the same suffixes are
emitted to the same bolt; and 2) Index Reporter Bolt, using
GlobalGrouping mechanism (as purple arrows), i.e., all
suffixes are emitted to one bolt to update the hourly counts
of suffix tree index.

6

Tr1 [10:21,10:24]

e1→e2→e3→e4

Step 1. Path Decomposition Query Results

e1→e2→e3→e4, [10:20, 10:25]

e1e2e3, [10:20, 10:25],
e2e3e4, [10:20, 10:25]

Step 3. Trajectory Reconstruction

Path Query Parameters
e1e2e3

Tr1 [10:21,10:23]

Tr2 [10:21,10:22]

Tr1 [10:22,10:24]

Tr2 [10:24,10:25]

Tr1 [10:21,10:24]

Suffix Records

root

e1 e7

e2

e3 e4

e2

e4

e3

e9...

... ...

...

Suffix-tree Index

e3

Step 2. Suffix Index Record Retrieval

e2e3e4

e1e2e3e4

Fig. 8: Overview of Path Query Processing Module.

• Table Record Inserter Bolt. This bolt inserts sub-
trajectories into Azure Table in batches. It groups sub-
trajectories based on their start time, where all sub-
trajectories with the same start time period (i.e., in the same
hour in our implementation) are inserted into Azure Table
as one batch to avoid small writings and overcome I/O
bottlenecks.

• Index Reporter Bolt. This bolt aggregates all suffixes
from Suffix Generators and updates the suffix tree index:
1) adding new branches, if a new suffix is generated; or
2) updating the statistics (i.e., hourly count) on each node
based on new trajectories. Once the index is updated, the
new index structure will be stored in an Azure blob.

5 QUERY PROCESSOR

Because the table-based suffix tree index employs a maxi-
mum height H , the qualified trajectories cannot be directly
retrieved from the index if the number of edges in a query-
ing path is greater than H . To this end, we propose a new
process to answer path queries and implement it in Azure
Storm to improve its efficiency. In this section, we first
introduce an overall process to answer path queries using
a table-based suffix tree index. After that, we present our
Storm-based implementation to answer path queries with a
better efficiency and overall throughput. Finally, we present
an extended Storm topology to answer partial path queries.

5.1 Overall Path Query Process

Figure 8 gives an overview of the querying process with
three main steps: 1) Path Decomposition, where we decom-
pose the querying path P into several sub-paths; 2) Suffix
Index Record Retrieval, where we retrieve candidate sub-
trajectories from suffix records using the decomposed sub-
paths and querying time period; and 3) Trajectory Recon-
struction, where we reconstruct candidate trajectories based
on the retrieved sub-trajectories. Finally, the reconstructed
trajectories are returned as results.

5.1.1 Path Decomposition
In this step, we break the querying path P into multi-
ple sub-paths with the maximum length of H (i.e., P ⇒
{p1, p2, ..., pl}, where pi can be mapped as a table in the
suffix tree index, e.g., e1 → e2 → e3).

As shown in Figure 8, the decomposed sub-paths are
used to retrieve candidate sub-trajectories from the table-
based suffix tree index. This process incurs accesses to storage
components (i.e., Azure Table), and there are multiple ways
in decomposing a path into sub-paths with a length no more
than H . Therefore, choosing a suitable way to decompose
the querying path is essential to improve the efficiency of
query processing. In order to effectively take advantage of

the indexed suffix record in Azure Table, the following three
requirements should be enforced:

(1) ∀pi ∈ P, |pi| = H , i.e., the length of each decomposed
sub-path should be equal to the maximum height H , as it
returns the fewest qualified candidates from Azure Table.
Otherwise, for example, when a querying path is decom-
posed into multiple sub-paths with a length less than H ,
each sub-path retrieves more disqualified candidates, and
it requires more I/O overhead to retrieve them and more
computation overhead to join them.

(2) P =
⋃l

i=1 pi, which means all edges in the querying
path P should be covered in a union set of decomposed sub-
paths, as fewer candidates are returned. Otherwise, if we
only cover partial path (e.g., {e1 → e2} in {e1 → e2 → e3}),
candidate trajectories returned by the index will include
disqualified trajectories that do not exactly traverse the
querying path (e.g., {e1 → e2 → e4}).

(3) ∀pi, pi+1 ∈ P, pi ∩ pi+1 6= ∅, i.e., there is at least
one overlapped edge between every pair of consecutive sub-
paths. The main reason here is to avoid additional I/O over-
head to access map-matched trajectory data in Azure Table.
If there is no overlapped edge between two consecutive
decomposed sub-paths (e.g., P = {e1 → e2 → e3 → e4 →
e5 → e6} ⇒ [p1 = {e1 → e2 → e3}, p2 = {e4 → e5 → e6}]),
the results will contain disqualified trajectories that do not
pass the sub-paths p1 and p2 consecutively and sequentially
(e.g., a trajectory passes p1, e7, and then p2). It requires
an additional access to the Azure storage to verify the
correctness, which can be very time-consuming.

As each sub-path contains different numbers of trajec-
tories during the querying temporal period, e.g., more in
downtown areas, and fewer in suburbs. Different decom-
posed sub-path combinations retrieve different numbers of
trajectories during the querying process, which has signifi-
cant impact on the query response time. As hourly count in
the suffix tree index provides an approximate distribution
of the number of trajectories on each sub-path, we develop
three heuristics to decompose a querying path:

Solution 1. Minimize Sub-path Number. This method
uses a sliding window, with a window size of H and a
step size of H − 1, to decompose the querying path. The
main intuition behind this method is to minimize the total
number of decomposed sub-paths. Essentially, it aims to
minimize the total number of sub-trajectory retrieval queries
to the table-based suffix tree index.

For example, assuming we have a table-based suffix-tree
with a max height of 3, and a querying path P = {e1 →
e2 → e3 → e4 → e5}, the querying path P is decomposed
into two sub-paths: p1 = {e1 → e2 → e3} and p2 = {e3 →
e4 → e5}.

Solution 2. Minimize Total Count. This method de-

7

(b) Minimize Total Count

i f(i)

4

u

c(e1:e3) + c(e2:e4) = 140

c(e1:e3) + c(e3:e5) = 2105

6

7

8

3

3

4

5

7

Suffix

Count

e6e7e8e5e6e7e4e5e6e3e4e5e2e3e4e1e2e3

60 80 150 85 1 70

(a) Hourly Count in Suffix Tree

min + c(e4:e6) = 225
f (4)
f (5)

(c) Minimize Max Count

i f(i)

4

u

max(c(e1:e3), c(e2:e4)) = 80

max(c(e1:e3), c(e3:e5)) = 1505

6

7

8

3

3

4

6

6

max = 85min , c(e4:e6)
f (4)
f (5)

max = 85min , c(e5:e7)
f (5)
f (6)

max = 85min , c(e6:e8)
f (6)
f (7)

 min + c(e5:e7) = 211
f (5)
f (6)

 min + c(e6:e8) = 281
f (6)
f (7)

Fig. 9: Examples of Querying Path Decomposition Methods.

composes the querying path into sub-paths with a goal of
minimizing the total number of hourly count. The intuition
here is to reduce the size of data (i.e., the total number of
sub-trajectories) retrieved from the storage.

We developed a dynamic programming algorithm to
find the optimal decomposition method with the minimum
total count, of which the state transfer equation is listed as
follows:

f(i) =

{
c(e1 : ei) if 0 < i ≤ H

min
j=1...H−1

f(i−H + j) + c(ei−H+1 : ei) if i > H

where f(i) denotes the minimum total count when a path is
ended with the ith edge ei, and c(ei : ej) denotes the hourly
count for the corresponding path ei → ei+1 → ... → ej .
When the length of querying path is larger than H , its
last suffix (i.e., ei−H+1 : ei) is always selected (i.e., to
fulfill the requirements 1&2). We also use an array u to
record the optimal decomposition slot in each step. As a
result, the algorithm scans the edges in querying path from
back to front and returns decomposed results with a time
complexity of O(n), where n is the length of querying path.

Figure 9 gives an example of decomposing a query path
P = {e1 → ... → e8}, where the hourly count of each
sub-path is in Figure 9a and the decomposing steps are
presented in Figure 9b (column i indicates the step, f(i)
calculates the candidate total counts in each step, and u
shows the optimal decomposing position in each step). As
a result, the querying path is decomposed into four sub-
paths: p1 = {e1 : e3}, p2 = {e3 : e5}, p3 = {e5 : e7}, and
p4 = {e6 : e8} with a total hourly count of 281.

Solution 3. Minimize Max Count This method aims
to minimize the max number of hourly count in each sub-
path. The main intuition of this method is to minimize the
effect of the worst case scenario (i.e., retrieving a lot of sub-
trajectories in some sub-paths, such as edges in downtown
areas). It is especially useful in a distributed computing
environment, where the total processing time depends on
the last finished sub-task.

We apply a similar dynamic programming algorithm to
find a path decomposition plan that minimizes their max
count. Finding the optimal decomposition tries to combine
the previous optimal decomposition with the last edge
group, and keep track of their minimum max count. After
that, the maximum value between the count of the last suffix

and the previous minimum max count is kept. The state
transfer equation is defined as follows:

f(i) =

{
c(e1 : ei) if 0 < i ≤ H

max(min
j=1...H−1

f(i−H + j), c(ei−H+1 : ei)) if i > H

where f(i) denotes the minimum max count when the path
is ended with the ith edge ei. In each step, we keep an array
u to record the decomposition slot. The complexity of this
algorithm is also linear to the length of querying path.

Figure 9a & 9c gives an example of decomposing the
querying path using Minimizing Max Count method, where
the path P is decomposed into four sub-paths p1 = {e1 :
e3}, p2 = {e2 : e4}, p3 = {e4 : e6}, and p4 = {e6 : e8}.
Comparing to Minimize Total Count method (i.e., c(p2) = 150
& c(p3) = 1), this method (i.e., c(p2) = 80 & c(p3) = 85)
returns a more total count (i.e., 165 vs. 151) but with a less
variance (i.e., 80 & 85 vs. 150 & 1).

5.1.2 Suffix Index Record Retrieval
In this step, the system retrieves sub-trajectories from Azure
Table based on a decomposition plan. For each decomposed
sub-path, a temporal range query is issued, where the
Table Name is a sequence of edge names (e.g., e1e2e3), the
PartitionKey is the temporal information to hours (e.g.,
2017122501 for the querying time of 2017/12/25 01:00 -
2017/12/25 01:59), and the RowKey is the detailed temporal
range (e.g., 201712250100 to 201712250159). If the querying
time overlaps with multiple partitions (i.e., covering multi-
ple hours), multiple queries with different PartitionKeys
are generated.

As a result, each query to the table-based suffix index re-
turns a set of sub-trajectories, which consists of trajectory ID,
a sequence of edges, and a pair of start/end time period of
sub-trajectories. Because this step involves heavy interaction
with Azure Storage, it dominates the response time and is
potentially a system bottleneck.

5.1.3 Trajectory Reconstruction
In this step, we reconstruct qualified trajectories by joining
the sub-trajectories retrieved in the previous step. The trajec-
tory reconstruction process is executed based on the order of
decomposed sub-paths. The sub-trajectories traversing the
first sub-path is our candidate set. For each sub-trajectory
in the candidate set, if it does not appear in all latter sub-
paths, the trajectory is discarded. Otherwise, we check if
these sub-trajectories have correct overlapped time period
between their start and end timestamps. For example, as
shown in Step 3 of Figure 8, the querying path P = {e1 →
e2 → e3 → e4} is decomposed into p1 = {e1 : e3} and
p2 = {e2 : e4}, and the suffix records of both sub-paths
contain Tr1 and Tr2. However, Tr1’s temporal window in
e1e2e3 overlaps with that in e2e3e4 correctly, while Tr2’s
does not. As a result, Tr1 is a qualified trajectory for this
query, while Tr2 is not.

5.2 Storm-based Path Query Implementation
To overcome the I/O bottleneck in path query processing
and efficiently support large-scale concurrent path queries
from traffic pattern analysis applications, e.g., [1, 19], we
implement our query processing component using Storm.

8

Spout

Suffix Record
Retrieval Bolt

Suffix Record
Retrieval Bolt

…

Storm Topology of Path Query Processing

Suffix
Records

Trajectory
Reconstruction Bolt

root

e1 e7

e2

e3 e5

e3

e4

e3

e9...

... ...

... ...

Suffix
Tree

Path Query
Results

ShuffleGrouping

FieldGrouping

Partial Path Query Extension

Trajectory
Retrieval Bolt

Trajectory
Retrieval Bolt

…ShuffleGrouping

Map-Matched
Trajectories

Report Bolt

FieldGrouping

Partial Path
Query Results

Path
Queries

Message
Queue

Fig. 10: Storm-based Path Query Processing Topology.

The left portion of Figure 10 depicts the Storm topology
with the following three main modules:

• Spout. The spout has two tasks: 1) it reads query-
ing parameters from an Azure queue (which is used to
cache concurrent queries) and assigns IDs to different path
queries; and 2) it decomposes querying paths into multiple
sub-paths based on the hourly count with different heuristics
and emits different sub-paths with their query IDs to Suffix
Record Retrieval Bolts using ShuffleGrouping mechanism (i.e.,
randomly assignment) to balance workloads.

The reasons of putting these two tasks together in one
spout rather than separately are that: 1) the two tasks are
not computationally and I/O intensive, and they are not the
bottleneck of path query processing; and 2) the unnecessary
network communication cost between different Storm com-
ponents can be reduced.

• Suffix Record Retrieval Bolt. This type of bolt gets
decomposed sub-paths and retrieves sub-trajectories from
Azure Table. The retrieved sub-trajectories are then emitted
to Trajectory Reconstruction Bolts using FieldsGrouping mecha-
nism based on their query IDs (i.e., the sub-trajectories from
the same path query are passed to the same bolt). Distribut-
ing suffix record retrieval processing across multiple bolts
avoids the system bottleneck of accessing multiple Azure
tables and increases the system throughput in dealing with
concurrent queries.

• Trajectory Reconstruction Bolt. This type of bolt re-
ceives sub-trajectory information with the same query ID,
and reconstructs overlapped sub-trajectories for each path
query. Finally, the bolt writes qualified trajectories as query
results to an Azure Redis cache.

5.3 Partial Path Query Extension

For partial path queries, the detailed trajectory informa-
tion cannot be returned by the previously designed Storm
topology, as we cannot reconstruct trajectories directly from
disconnected paths. To this end, an additional step is needed
to retrieve complete trajectory data and perform a verifi-
cation task. Figure 10 provides an overall Storm topology,
which is an extension of the path query Storm topology.
The partially reconstructed trajectories are emitted from
Trajectory Reconstruction Bolt using ShuffleGrouping to the
following components:

• Trajectory Retrieval Bolt. This bolt retrieves detailed
trajectory data from the map-matched Azure Table based on
candidate trajectory IDs and their temporal ranges. It then
verifies the correctness with the path groups in the querying
parameter. After that, the retrieved information is emitted

to Report Bolt using FieldsGrouping mechanism based on
path query IDs. To overcome I/O bottleneck, this process
is implemented using multiple bolts to retrieve trajectory
data from different Azure tables.
• Report Bolt. This bolt is fed with qualified trajectories.

Once all trajectories with the same path query have arrived,
the results are sent to the client via an Azure Redis cache.

6 EXPERIMENTS & DEPLOYMENT

In this section, we conduct extensive experiments to
evaluate our system. The system is implemented in C#, and
deployed on Microsoft Azure. We first describe the details
of trajectory dataset used in the experiments. After that, we
provide a detailed efficiency study on different parameters
on both index building and query processing. Finally, we show
a deployed traffic analysis system based on our path query
processing framework.

6.1 Dataset & Settings
In this subsection, we first present the trajectory dataset
used in our experiments. After that, we describe the ex-
periment settings, including the configurations of Microsoft
Azure and default parameters. Finally, we present a set
of experiments to choose a default max height and path
decomposition method.

6.1.1 Dataset

Trajectories. In the experiments, we use real taxi trajectories
from Guiyang, a southwest city in China, starting from
Sept. 30th, 2016 to Feb. 28th, 2017. The dataset contains
893,001,150 GPS points of 5,425 taxis, whose average sam-
pling interval is about 1 minute. Moreover, to test the
scalability of our proposed solution with different numbers
of taxis, we extract a copy of historical data, and then
randomly sample and copy existing trajectories to simulate
usage scenarios with different total numbers of taxis, from
3,000 to 20,000.
Road Networks. We extract the road networks of Guiyang,
China from Bing Map. The extracted road networks contain
23,236 vertexes and 29,334 road segments.

6.1.2 Azure Resources
Table 1 summarizes the Azure settings used in our exper-
iments. We use locally redundant storage (LRS) for Table
Storage and Blob Storage, where the data is duplicated by
three times in the same data center5. We also use the Storm
component provided by HDinsight, of which the number of
data nodes varies from 1 to 15.

5. https://docs.microsoft.com/en-us/azure/storage/storage-
redundancy

9

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5

N
u

m
b

er
 o

f
T

ab
le

s
(x

1
0

3
)

Max Height

(a) Suffix Combinations.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

In
se

rt
 T

im
e

(m
in

)

Max Height

Storm
Standalone

(b) Indexing Efficiency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 3 5 7

S
u

ff
ix

 I
n

d
ex

 S
iz

e
(G

B
)

Number of Days

H = 1
H = 3
H = 5

(c) Index Sizes.

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20 25 30

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Length of Querying Path

H = 1
H = 2
H = 3
H = 4
H = 5

(d) Query Efficiency.
Fig. 11: Max Height Settings.

TABLE 1: Azure Resource Settings

Azure Components Configurations
Table Storage Locally Redundant Storage (LRS)
Blob Storage Locally Redundant Storage (LRS)

Azure Storm
Head Node: A3, 4 cores, 7GB RAM

Zookeeper: A1, 1 cores, 1.75GB RAM
Data Node: A3, 4 cores, 7GB RAM

6.1.3 Experiment Parameters

Table 2 shows all parameters in the experiments, where the
default settings are highlighted. For the querying efficiency,
we randomly select 10 paths as querying paths. For each
querying path, we execute path queries for 1,000 times, and
calculate the average response time as final results.

TABLE 2: Default Experiment Settings

Component Parameters Settings

Indexing
Data Size 3,000, 5,000, 10,000, 20,000

Temporal Batch 5, 10, 20, 30, 40 minutes
Storm Size 1, 3, 5, 10 nodes

Querying
Path Length 5, 10, 15, 20

Timespan 1, 2, 3, 4, 5 hours
Storm Size 1, 3, 5 ,7 ,10, 15 nodes

Max Height Settings. The most important setting in the
experiments is the max height of suffix tree index. We provide
a set of experiments in Figure 11 to demonstrate the effects
of different max heights.

Figure 11a gives the number of suffix combinations gen-
erated by trajectories in each batch (i.e., in 20 mins). From
the figure, we can see that the number of suffix combina-
tions increases exponentially with the growth of max height,
because a larger max height means more suffix combinations
generated by a trajectory. As each suffix combination incurs
one insertion to Azure Table, the temporal cost of insertion
also grows exponentially, as demonstrated in Figure 11b.
It is clear from Figure 11b that using the proposed Storm-
based approach, a significant efficiency improvement is
achieved, especially with a larger max height. Because Storm
distribute trajectory data to multiple machines, and can
overcome the high I/O overhead problem. For example,
we can index a 20-min trajectory batch within four minutes
using Storm, while the Standalone approach needs over 50
minutes (which is useless in real-time scenarios).

Moreover, different sizes of suffix data are generated
with different max heights, as shown in Figure 11c, where
a larger H results more duplicated data during the suffix
generation process. It is worth noting that it also demon-
strates the size of in-memory inverted index for traditional
approaches, e.g., [9, 10] with H = 1. Thus, it is impossible

for in-memory indexing method to scale up when the du-
ration of trajectory data is very long. Our proposed suffix
index stores actual trajectory records in Azure Table, and
only hold some statistics in memory. Thus, the proposed
index can process a very long period of trajectory data.

Query processing with different lengths of querying path
is also evaluated with different max heights. As shown in
Figure 11d, it is obvious that with a longer querying path
length, more time is used, as it retrieves more entries from
Azure Table. Moreover, with a larger max height, the query
efficiency is better. Because with a larger max height, the
index pre-computes more information and generates fewer
candidates.

As a result, max height is an important trade-off factor in
the system that, with a larger max height, the system needs
more time and more space in the index processing, while
the query processing time is saved. To balance the efficiency
between the indexing and query processing, for the remain-
ing experiments, max height is set as three. However, users
can set a different value of max height according to different
application scenarios.
Path Decomposition Methods. Figure 12a gives the average
response time with different lengths of querying path using
the three path decomposition methods proposed in this
paper, i.e., Minimize Sub-path Number (MSN), Minimize
Total Count (MTC) and Minimize Max Count (MMC). All
the experiments are based on a Storm cluster with five data
nodes. We can observe from the figure that MMC has the
best performance, especially, when the length of querying
path is larger, as in a distributed computing environment,
this method avoids to retrieve suffixes with a lot of entries,
which avoids the potential I/O bottleneck. On the other
hand, the naive MSN method has the worst performance,
as it does not consider the significant differences between
suffix entries.

 490

 500

 510

 520

 530

 540

 550

 560

 570

 580

 590

5 10 15 20 25

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Querying Path Length

MSN
MTC

MMC

(a) Querying Path Length.

 540

 550

 560

 570

 580

 590

 600

 610

1 3 5 10

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Data Nodes

MSN
MTC

MMC

(b) Number of Data Nodes.
Fig. 12: Path Decomposition Methods.

Figure 12b presents the average response time of three
path decomposition methods with different numbers of data
nodes in a Storm cluster. We set the querying path length as

10

20 to make the difference among the path decomposition
methods clearer. It shows that, with more data nodes, we
can achieve a higher efficiency, because the I/O overhead
is distributed among more machines. MMC has the best
performance when the number of data nodes is greater
than or equal to 3, because it limits the maximum entries
retrieved in each node, which avoids the potential I/O
bottleneck. For the cluster with one data node, MTC has
the best performance, because it reduces the size of data
retrieved from the storage. As we deploy our system in
a distributed environment for high concurrency queries,
MMC is used as our default path decomposition method
in the remaining experiments.

6.2 Index Building Efficiency
In this subsection, we evaluate the performance of index
building with different settings:

 0

 1

 2

 3

 4

 5

 6

 7

 8

3k 5k 10k 15k 20k

In
se

rt
 T

im
e
 (

m
in

)

Number of Taxis

10 Nodes
5 Nodes
3 Nodes

(a) Different Data Size.

 0

 1

 2

 3

 4

 5

 6

5 10 20 30 40

In
se

rt
 T

im
e

(m
in

)

Trajectory Batch (min)

10 Nodes
5 Nodes
3 Nodes

(b) Different Temporal Batch.
Fig. 13: Index Building Efficiency.

Different Trajectory Data Sizes. Figure 13a gives the suffix
tree index building time with different trajectory data sizes,
i.e., from 3,000 to 20,000 vehicle trajectories. We test the
indexing time for different numbers of nodes in the Storm
cluster. From the figure, we have the following observations:
1) the indexing time increases with bigger data sizes, as
more trajectories generate more suffix combinations to be
inserted in Azure Table. Moreover, the total size of inserted
data increases; and 2) with more data nodes, we can see
a clear performance boost, as the main bottleneck in this
process is the number of I/O accesses to Azure Table.
Thus, with more nodes in the Storm cluster, the throughput
of system increases significantly and a better efficiency is
achieved.
Different Temporal Batch Sizes. Figure 13b gives the index
building time with different temporal batch sizes, i.e., from
5 to 40 minutes. We test our system with three different
settings of Storm cluster. It is clear that with a longer
temporal batch, the processing time increases significantly,
as more trajectories being cached in a longer batch. It results
in: 1) more road segments are covered, 2) more suffix combi-
nations are generated, and 3) more entries to be inserted into
Azure Table. We can also realize that a Storm cluster with
more data nodes works better. It is because with more data
nodes, Azure Table insertion operations can be executed
more effectively in parallel.

6.3 Query Processing Efficiency
In this subsection, the query processing performance is
evaluated with different query parameters: 1) trajectory data
sizes, 2) trajectory data periods, 3) querying time spans,

and 4) length of querying paths. For each experiment, we
randomly select 10 querying paths and execute 1,000 times
path queries for each path, and then evaluate the average
response time. After that, we perform a concurrent query
test to demonstrate the scalability of our system, where
multiple queries are inserted into the queue at the same
time, and we evaluate the average response time of our
system to address all queries. Finally, we also show the
experiments for the performance of our extension problem,
i.e., partial path query processing.
Different Numbers of Trajectories. Figure 14a illustrates
the path query processing performance (i.e., response time)
with different trajectory sizes from 3,000 to 20,000 vehicles.
With more trajectories, the query processing time increases,
as more trajectory information is retrieved from the same
suffix. It is also very important to notice that the growth
of response time is relatively small, comparing to the size
of dataset. It is because that trajectory data with the same
suffix is stored in the same partition, which can be retrieved
efficiently in one batch.
Different Sizes of Historical Data. Figure 14b shows the
query response time with different sizes of historical tra-
jectory data, varying from 3 to 30 days. It is obvious from
the figure that the querying performance is very consistent
with different amount of historical data. It is because the
data in Azure Table is partitioned based on their temporal
ranges. More historical data only generates more partitions,
and Azure storage component has been optimized for the
partition-based data access. As a result, we can confirm
that our system is scalable to handle trajectory data with
very long time period, without degrading the querying
performance.
Different Querying Time Spans. Figure 14c gives the path
query response time with different time spans from 1 to 5
hours. It is clear from the figure that, with a longer times-
pan, the response time increases. It is because more data
partitions are accessed in Azure Table and more qualified
trajectories are returned. It is also interesting to see that, al-
though in general, we can achieve a little better performance
with more data nodes, there are very little performance
differences when the number of data node is more than
3. The reason behind this is that in the default settings,
the length of querying path is 10, which only generates
13 different suffixes, a Storm cluster with 3 nodes is large
enough to distribute the workload of suffix record retrieval.
Different Querying Path Lengths. Querying efficiency with
different numbers of edges in a querying path is presented
in Figure 14d, where the number of edges is set from 5 to
20. It is clear to see that the query processing time increases
with more edges in a querying path. It is because that more
suffixes are generated, which increases the number of Azure
Table accesses. Moreover, we can also observe that with
more data nodes, the performance of the query processing
is generally better. However, similar to the previous experi-
ment, the performance difference among the Storm clusters
with different numbers of data nodes is very limited.

As a result, we can conclude that, if the system is used
to answer single path queries from users, the number of
data nodes used in the Storm cluster is not a performance
bottleneck. In other word, it is a more economic solution to

11

 0

 100

 200

 300

 400

 500

 600

 700

3k 5k 10k 15k 20k

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Taxis

(a) Different Trajectory Numbers.

 0

 100

 200

 300

 400

 500

 600

 700

3 7 15 30

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Days

(b) Different Historical Data Sizes.

 500

 600

 700

 800

 900

 1000

 1100

 1200

1 2 3 4 5

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Timespan (h)

1 Data Node
3 Data Node
5 Data Node
7 Data Node

10 Data Node

(c) Different Querying Timespans.

 450

 500

 550

 600

 650

 700

5 10 15 20

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Querying Path Length

1 Data Node
3 Data Node
5 Data Node
7 Data Node

10 Data Node

(d) Different Query Path Lengths.
Fig. 14: Query Processing Efficiency.

have a small number of data nodes in the Storm cluster for
answering path queries individually.
Scalability of Concurrent Queries. In many urban appli-
cations, e.g., traffic analysis and path recommendations, a
lot of path queries need be answered in batches to complete
analysis tasks. For example, 30 path queries with different
dates need to be answered if a user wants to analyze the
travel time distribution of one path in the morning rush
hours through one month. As a result, the scalability of
handling concurrent path queries is vital to support complex
data mining tasks.

10
2

10
3

10
4

10
5

250 500 1000 2000 3000

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Concurrent Queries

15 Nodes
10 Nodes

5 Nodes
Standalone

Fig. 15: Different Querying Concurrency.

Figure 15 presents the average response time with dif-
ferent numbers of concurrent queries in the queue, varying
from 200 to 3,000. The experiments are done with differ-
ent numbers of data nodes in the Storm cluster, and the
”standalone” method represents a centralized version of the
proposed solution. It is clear in the figure that with more
concurrent queries in the queue, the average response time
increases. Moreover, the Storm-based querying processing
framework is much better than Standalone method, and the
Storm clusters with more number of data nodes perform
better when more concurrent queries are issued in the
queue. This is because that, with more data nodes, we
can distribute I/O overhead more effectively and achieve
a better system throughput.

As a result, we can conclude that if the path query
processing system needs to serve concurrent path queries
from data analysis/mining applications, more data nodes
should be employed in the Storm cluster to ensure the
system efficiency.
Partial Path Queries. In this set of experiments, i.e., Fig-
ure 16a and 16b, we evaluate the performance of partial
path queries. As the system needs to access map-matched
results to extract qualified trajectories, the response time in
the figure is divided into two parts: 1) index response, which
is the time to get data from the suffix index (marked in red);
and 2) trajectory retrieval, which is the time to obtain full
trajectory information from map-matched tables (marked in

green).

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 3 4 5

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Path Groups

Index Response
Trajectory Retrieval

(a) Different Path Groups.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4

A
v

g
.

R
es

p
o

n
se

 T
im

e
(m

s)

Timespan (h)

Index Response
Trajectory Retrieval

(b) Different Timespans.
Fig. 16: Partial Query Processing Efficiency.

Figure 16a gives the average response time of partial
path queries with different numbers of path groups (i.e., the
number of disconnected edges in a partial path), from 2 to
5. The figure shows that the time to access the suffix index
increases with more path groups, as more suffix entries
are accessed to retrieve candidate trajectories. On the other
hand, the trajectory retrieval time decreases significantly,
because with more path groups in the parameter, fewer
trajectories are qualified. As the trajectory retrieval process
also needs to access Azure Table, which takes significant
response time, we can observe that with more path groups
in the parameter, the total response time decreases first, and
then increases.

Figure 16b shows the average response time with differ-
ent time spans in a partial path query processing scenario.
We can observe that both index response time and trajectory
retrieval time increase with a longer time span. This is
because, with a longer time span, more data is returned
when accessing the table-based suffix tree index. Also, more
qualified trajectories are retrieved from corresponding map-
match tables when the time span is longer.

6.4 System Deployment

We deployed a real-time traffic analysis system, entitled
Urban Traffic [13], on Microsoft Azure, as shown in Figure 17.
This system aims to help the Guiyang government to ana-
lyze the traffic conditions of two main highways connecting
downtown and the airport (highlighted on the map).

At the back-end, the system continuously gets the GPS
updates from over 5,000 active taxis in Guiyang City. At
the front-end, a user specifies a temporal range for analysis,
e.g., the past two weeks, as shown in Figure 17a. As a
result, multiple path queries are issueed (one query for each
hours), which creates multiple queries for each path. After
all qualified trajectories are retrieved, we plot a hourly travel
time distribution chart for the user, as shown in Figure 17b.

12

(a) Main System Interface. (b) Traffic Analysis Panel.

Fig. 17: A Traffic Analysis System in Guiyang Government.

In this chart, the blue line is the average travel time, and the
range indicates the travel time variances. In this example,
we can see at 22:00, there is a significant peak, which means
that some trajectories spent much more time (usually is
the indication of traffic jam or accident). This tool is very
useful for the government, as they can compare the results
from different temporal periods, and generate reports to
verify the effectiveness of transportation regulations and
operations, such as traffic control or road constructions.

7 DISCUSSION

Although our solution is implemented based on Mi-
crosoft Azure, other cloud platforms, e.g. AWS 6, Alibaba
Cloud 7, and JD Cloud 8, can also be used, because all
of them have already integrated Redis Cache, Kafka Mes-
sage Queue and Storm Cluster (The three are open-source
projects). They also provide substitutions for Azure Table
and Azure Blob. For example, Alibaba Cloud provides OSS
(Object Storage Service) 9 which can store the suffix tree
structure, and Table Store 10 which can store the suffix tree
records. In the open-source world, Apache HDFS 11 can
replace Azure Blob seamlessly, and Apache HBase 12 could
be an alternative of Azure Table. However, as HBase does
not support secondary index, and the number of tables in a
HBase cluster may be limited, the schema to store suffix tree
records using HBase should be carefully redesigned, which
is left for our future work.

8 RELATED WORKS

We summarize the related works with following two
aspects: 1) trajectory query & mining, and 2) parallel spatial
computing platforms.

8.1 Trajectory Query & Mining

Trajectories can be extensively used for many urban ap-
plications, e.g., urban planning[20], traffic management[21],
environment protection[22] and safty monitoring[23–25]. To

6. https://aws.amazon.com/
7. https://www.alibabacloud.com/
8. https://www.jdcloud.com/
9. https://www.alibabacloud.com/product/oss
10. https://www.alibabacloud.com/product/table-store
11. http://hadoop.apache.org/
12. https://hbase.apache.org/

make use of massive trajectories, many different spatio-
temporal indexes have been proposed, such as [26–30].
With road network constraints, new index structures have
been proposed to index and query the movements in a
spatial network, e.g., [31–34]. However, existing network
constrained indexing techniques do not support path queres
directly, as they require an additional filtering and refining
process, which is inefficient to execute path-based queries
and analyses. The closest works on path query processing
are [1, 9–11]. [9, 10] process path-based queries with efficient
arithmetic operations to verify trajectories and avoid join
operations. [1, 11] employ a suffix tree index to speed up
join operations. However, these solutions still suffer from
three main drawbacks: 1) they need to maintain a trajectory
index (e.g., inverted list or suffix tree) in the memory, which
is problematic when the size of trajectory data is huge, e.g.,
millions of trajectories over several years; 2) all of them are
implemented based on one single machine, which creates
performance bottleneck when a large number of concurrent
queries are issued from urban data mining systems; and
3) none of existing works is able to handle real-time tra-
jectory updates, which makes them impossible to process
real-time queries/analyses.

Unlike aforementioned approaches, our proposed sys-
tem introduces a modified suffix tree index with bounded
size, and takes advantage of the cloud storage to hold
arbitrary size of trajectory data, without worrying about if
the size of index can be fit in the memory. We also utilize a
parallel streaming framework, i.e., Storm, to overcome the
I/O bottleneck in index building and query processing.

8.2 Parallel Spatial Computing Platforms
Parallel computing platforms are not designed originally for
spatio-temporal computing. Thus, there are many attempts
to extend existing parallel computing platforms to support
spatio-temporal data. The first attempt to involve Hadoop
in spatial computing is done by Parallel SECONDO [35],
which combines Hadoop with SECONDO. Hadoop-GIS [36]
utilizes global partition indexes and customized on-demand
local spatial indexes to efficient supports multiple types
of spatial queries. SpatialHadoop [37] is a comprehensive
extension to Hadoop, which has native support for spatial
data by modifying the underlying code of Hadoop. [38]
and [39] propose parallel algorithms to answer trajectory
spatio-temporal range queries using Hadoop framework.

13

Most recently, due to the high I/O cost in Hadoop, there
are some systems, e.g., SpatialSpark [40], GeoSpark [41], and
TrajSpark [42] proposed, trying to support large-scale spatial
queries and joins in Spark framework. [15] and [43] build a
holistic distributed computing platform for preprocessing
and querying trajectory data on the cloud. However, none
of above systems supports path queries directly. In our
system, special index data structures and parallel computing
algorithms are used to enhance the performance of path
query processing on the cloud.

9 CONCLUSION

In this paper, we present a holistic and real-time path
query processing system on Microsoft Azure. We mod-
ify the original suffix tree index with max height, hourly
count and table storage to index large-scale trajectories. The
system contains two parts: 1) back-end processing, which
pre-processes massive raw trajectories and updates table-
based suffix index efficiently. In order to support real-time
updates, we implement our indexing algorithm based on
Storm to overcome the I/O bottleneck; and 2) service provid-
ing, which answers path queries and partial path queries
efficiently with a carefully designed Storm topology. To
further improve the efficiency of system, multiple heuristic
querying path decomposition methods are proposed.

The experiments, based on the real trajectories of over
5,000 taxis in Guiyang, the capital of Guizhou Province,
China, demonstrate the efficiency of our system. We can
index a 20-min trajectory batch within less than four min-
utes, which enables real-time path queries and trajectory
analyses. The individual query processing time is less than
400 ms, with a setting of 5 data nodes in a Storm cluster.
We also provide some insights on choosing a suitable Storm
cluster size based on querying workloads: if the system is
used to answer individual path queries, fewer data nodes
are needed. Finally, we present a real traffic analysis system
based on our path query processing framework, which is
currently deployed in Guiyang City.

ACKNOWLEDGMENTS

Yu Zheng was supported by the National Natural Science
Foundation of China (Grant No. 61672399, No. U1609217).
Yanhua Li was supported in part by NSF CRII grant
CNS-1657350 and a research grant from DiDi Chuxing Re-
search. Yingcai Wu was supported by NSFC (61761136020,
61502416), Zhejiang Provincial Natural Science Foundation
(LR18F020001) and Microsoft Research Asia. Liang Hong is
supported by the National Key Research and Development
Program of China (Grant No. 2016YFB1000603).

REFERENCES
[1] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path

using sparse trajectories,” in SIGKDD. ACM, 2014, pp. 25–34.
[2] J. Dai, B. Yang, C. Guo, C. S. Jensen, and J. Hu, “Path cost

distribution estimation using trajectory data,” VLDB Endowment,
vol. 10, no. 3, pp. 85–96, 2016.

[3] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-based
most frequent path in big trajectory data,” in SIGMOD. ACM,
2013, pp. 713–724.

[4] S. Aljubayrin, B. Yang, C. S. Jensen, and R. Zhang, “Finding non-
dominated paths in uncertain road networks,” in SIGSPATIAL.
ACM, 2016, p. 15.

[5] G. Wu, Y. Ding, Y. Li, J. Bao, Y. Zheng, and J. Luo, “Mining spatio-
temporal reachable regions over massive trajectory data,” in ICDE.
IEEE, 2017, pp. 1283–1294.

[6] B. Krogh, O. Andersen, and K. Torp, “Trajectories for novel and
detailed traffic information,” in SIGSPATIAL. ACM, 2012, pp.
32–39.

[7] B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi, “Crowd sensing of
traffic anomalies based on human mobility and social media,” in
SIGSPATIAL. ACM, 2013, pp. 344–353.

[8] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” TIST, vol. 5, no. 3,
p. 38, 2014.

[9] B. Krogh, N. Pelekis, Y. Theodoridis, and K. Torp, “Path-based
queries on trajectory data,” in SIGSPATIAL. ACM, 2014, pp. 341–
350.

[10] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-memory indexing
of network-constrained trajectories,” in SIGSPATIAL. ACM, 2016,
p. 17.

[11] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A novel
framework of trajectory compression in road networks,” VLDB
Endowment, vol. 7, no. 9, pp. 661–672, 2014.

[12] R. Li, S. Ruan, J. Bao, Y. Li, Y. Wu, and Y. Zheng, “Querying
massive trajectories by path on the cloud,” in SIGSPATIAL. ACM,
2017.

[13] “Urbantraffic,” http://urbantraffic.chinacloudsites.cn.
[14] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-

voting based map matching algorithm,” in MDM. IEEE, 2010, pp.
43–52.

[15] J. Bao, R. Li, X. Yi, and Y. Zheng, “Managing massive trajectories
on the cloud,” in SIGSPATIAL. ACM, 2016, p. 41.

[16] Y. Zheng, “Trajectory data mining: an overview,” TIST, vol. 6,
no. 3, p. 29, 2015.

[17] R. Li, S. Ruan, J. Bao, and Y. Zheng, “A cloud-based trajectory data
management system,” in SIGSPATIAL. ACM, 2017.

[18] E. M. McCreight, “A space-economical suffix tree construction
algorithm,” Journal of the ACM (JACM), vol. 23, no. 2, pp. 262–272,
1976.

[19] Y. Li, Y. Zheng, S. Ji, W. Wang, Z. Gong et al., “Location selection
for ambulance stations: a data-driven approach,” in SIGSPATIAL.
ACM, 2015, p. 85.

[20] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes
based on sharing-bikes’ trajectories,” in SIGKDD. ACM, 2017, pp.
1377–1386.

[21] T. He, J. Bao, R. Li, S. Ruan, Y. Li, C. Tian, and Y. Zheng, “Detecting
vehicle illegal parking events using sharing bikes trajectories,” in
SIGKDD. ACM, 2018.

[22] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li, “Fore-
casting fine-grained air quality based on big data,” in SIGKDD.
ACM, 2015, pp. 2267–2276.

[23] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, and T. Li, “Predicting city-
wide crowd flows using deep spatio-temporal residual networks,”
Artificial Intelligence, 2018.

[24] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based prediction
model for spatio-temporal data,” in SIGSPATIAL. ACM, 2016,
p. 92.

[25] A. Vahedian, X. Zhou, L. Tong, Y. Li, and J. Luo, “Forecasting
gathering events through continuous destination prediction on big
trajectory data,” 2017.

[26] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal
access methods,” IEEE Data Eng. Bull., vol. 26, no. 2, pp. 40–49,
2003.

[27] Y. Li, C.-Y. Chow, K. Deng, M. Yuan, J. Zeng, J.-D. Zhang, Q. Yang,
and Z.-L. Zhang, “Sampling big trajectory data,” in CIKM. ACM,
2015, pp. 941–950.

[28] H. Doraiswamy, H. T. Vo, C. T. Silva, and J. Freire, “A gpu-
based index to support interactive spatio-temporal queries over
historical data,” in ICDE. IEEE, 2016, pp. 1086–1097.

[29] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva, “Visual
exploration of big spatio-temporal urban data: A study of new
york city taxi trips,” TVCG, vol. 19, no. 12, pp. 2149–2158, 2013.

[30] Y. Ding, Y. Li, X. Zhou, Z. Huang, S. You, and J. Luo, “Sampling
big trajectory data for traversal trajectory aggregate query,” IEEE
Transactions on Big Data, 2018.

[31] V. T. De Almeida and R. H. Güting, “Indexing the trajectories of
moving objects in networks,” GeoInformatica, vol. 9, no. 1, pp. 33–
60, 2005.

[32] E. Frentzos, “Indexing objects moving on fixed networks,” in

14

SSTD. Springer, 2003, pp. 289–305.
[33] D. Pfoser and C. S. Jensen, “Indexing of network constrained

moving objects,” in SIGSPATIAL. ACM, 2003, pp. 25–32.
[34] I. Sandu Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial, “Indexing

in-network trajectory flows,” VLDBJ, vol. 20, no. 5, pp. 643–669,
2011.

[35] J. Lu and R. H. Güting, “Parallel secondo: boosting database
engines with hadoop,” in ICPADS. IEEE, 2012, pp. 738–743.

[36] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop gis: a high performance spatial data warehousing system
over mapreduce,” VLDB Endowment, vol. 6, no. 11, pp. 1009–1020,
2013.

[37] A. Eldawy and M. F. Mokbel, “A demonstration of spatialhadoop:
an efficient mapreduce framework for spatial data,” VLDB Endow-
ment, vol. 6, no. 12, pp. 1230–1233, 2013.

[38] Q. Ma, B. Yang, W. Qian, and A. Zhou, “Query processing of
massive trajectory data based on mapreduce,” in Proceedings of
the first international workshop on Cloud data management. ACM,
2009, pp. 9–16.

[39] L. Alarabi, “St-hadoop: A mapreduce framework for big spatio-
temporal data,” in SIGMOD. ACM, 2017, pp. 40–42.

[40] S. You, J. Zhang, and L. Gruenwald, “Spatial join query processing
in cloud: Analyzing design choices and performance compar-
isons,” in ICPPW. IEEE, 2015, pp. 90–97.

[41] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing
framework for processing large-scale spatial data,” in SIGSPA-
TIAL. ACM, 2015, p. 70.

[42] Z. Zhang, C. Jin, J. Mao, X. Yang, and A. Zhou, “Trajspark:
A scalable and efficient in-memory management system for big
trajectory data,” in APWeb/WAIM. Springer, 2017, pp. 11–26.

[43] S. Ruan, R. Li, J. Bao, T. He, and Y. Zheng, “Cloudtp: A cloud-
based flexible trajectory preprocessing framework,” 2018.

Ruiyuan Li is a Ph.D. student at the School
of Computer Science and Technology, Xidian
University, China. He received his B.E. degree
and M.S. degree from Wuhan University, Hubei,
China in 2013 and 2016, respectively. His re-
search focuses on Urban Computing, Spatio-
temporal Data Management, and Distributed
Computing. He has interned in Urban Comput-
ing Group, Microsoft Research Asia from 2014
to 2017, and is now an intern student in JD Intel-
ligent City Research and JD Urban Computing

Business Unit under the advisory of Prof. Yu Zheng and Dr. Jie Bao.

Sijie Ruan is a first-year Ph.D. student in the
School of Computer Science and Technology, Xi-
dian University. He received his B.E. degree from
Xidian University in 2017. His research interests
include urban computing, spatio-temporal data
mining, and distributed systems. He was an in-
tern in MSR Asia from 2016 to 2017. He is now
a research intern in JD Intelligent City Research
and JD Urban Computing Business Unit, under
the supervision of Prof. Yu Zheng and Dr. Jie
Bao.

Jie Bao got his Ph.D degree in Computer Sci-
ence from University of Minnesota at Twin Cities
in 2014. He worked as a researcher in Urban
Computing Group at MSR Asia from 2014 to
2017. He currently leads the Data Platform Di-
vision in JD Urban Computing Business Unit.
His research interests include: Spatio-temporal
Data Management/Mining, Urban Computing,
and Location-based Services.

Yanhua Li received two Ph.D. degrees in electri-
cal engineering from Beijing University of Posts
and Telecommunications, Beijing in China in
2009 and in computer science from University of
Minnesota at Twin Cities in 2013, respectively.
He has worked as a researcher in HUAWEI
Noah’s Ark LAB at Hong Kong from Aug 2013 to
Dec 2014, and has interned in Bell Labs in New
Jersey, Microsoft Research Asia, and HUAWEI
research labs of America from 2011 to 2013. He
is currently an Assistant Professor in the Depart-

ment of Computer Science at Worcester Polytechnic Institute (WPI) in
Worcester, MA. His research interests are big data analytics and urban
computing in many contexts, including urban network data analytics and
management, urban planning and optimization.

Yingcai Wu is a tenure-track assistant profes-
sor at the State Key Lab of CAD & CG, Zhe-
jiang University, Hangzhou, China. He has been
selected by China’s 1000-Talents Program for
young scholars in 2016. His research interests
lie broadly in visual analytics and visualization.
He received his Ph.D. degree in Computer Sci-
ence from The Hong Kong University of Science
and Technology (HKUST), Hong Kong in 2009
and obtained his B.Eng. degree in Computer
Science and Technology from South China Uni-

versity of Technology, Guangzhou, China in 2004. Prior to his current
position, he was a researcher in Microsoft Research from May 2012 to
January 2015. He was a postdoctoral researcher at the Visualization
research group in HKUST from January to May 2010, and at the Visu-
alization and interface Design Innovation (VIDi) research group in the
University of California, Davis from June 2010 to March 2012.

Liang Hong received the BS and PhD degrees
in computer science from the Huazhong Univer-
sity of Science and Technology (HUST) in 2003
and 2009, respectively. Now, he is an associate
professor in the School of Information Manage-
ment at Wuhan University. His research interests
include knowledge graph, spatio-temporal data
management, and social networks. He is a mem-
ber of the IEEE.

Yu Zheng is a Vice President and Chief Data
Scientist at JD Finance Group, passionate about
using big data and AI technology to tackle urban
challenges. His research interests include big
data analytics, spatio-temporal data mining, ma-
chine learning, and artificial intelligence. He also
leads the JD Urban Computing Business Unit as
the president and serves as the director of the
JD Intelligent City Research. Before Joining JD,
he was a senior research manager at Microsoft
Research. Zheng is also a Chair Professor at

Shanghai Jiao Tong University, an Adjunct Professor at Hong Kong
University of Science and Technology.

