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ABSTRACT
The rapid development of e-commerce requires efficient and reliable
logistics services. Nowadays, couriers are still the main solution
to address the “last mile” problem in logistics. They are usually
required to record the accurate delivery time of each parcel manu-
ally, which provides vital information for applications like delivery
insurances, delivery performance evaluations, and customer avail-
able time discovery. Couriers’ trajectories generated by their PDAs
provide a chance to infer the delivery time automatically to ease
the burdens on the couriers. However, directly using the nearest
stay point to infer the delivery time is under satisfactory due to
two challenges: 1) inaccurate delivery locations, and 2) various
stay scenarios. To this end, we propose Delivery Time Inference
(DTInf), to automatically infer the delivery time of waybills based
on couriers’ trajectories. Our solution is composed of three steps:
1) Data Pre-processing, which detects stay points from trajectories,
and separates stay points and waybills by delivery trips, 2) Delivery
Location Correction, which infers true delivery locations of waybills
by mining historical deliveries, and 3) Delivery Event-based Match-
ing, which selects the best-matched stay point for waybills in the
same delivery location to infer the delivery time. Extensive experi-
ments and case studies based on large scale real-world waybill and
trajectory data from JD Logistics confirm the effectiveness of our
approach. Finally, we introduce a system based on DTInf, which is
deployed and used internally in JD Logistics.
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1 INTRODUCTION
Express couriers are the main solution to address the “last mile”
problem in logistics, currently. With the active development of
e-commerce, the workloads of couriers become heavier. When de-
livering a parcel, the courier is asked to perform an important
additional task besides the pick-ups and deliveries, i.e., recording
the delivery time of each parcel. Figure 1(a) shows the interface of
a courier’s PDA, displaying detailed information and actions for a
parcel delivery task, calledwaybill. The “Complete Delivery” button
is required to be clicked immediately when the parcel is delivered.
While the task of clicking this button each time a parcel is delivered
looks tedious, it helps to reveal accurate delivery time that is vital
for many applications in JD.com, e.g., delivery insurances, delivery
performance evaluations, and customer available time discovery.

(a) Courier’s PDA.

Geocoded Waybill Location

Point in Staying

 Point in Moving

(b) Courier’s Trajectories & Waybills.

Figure 1: Background and Opportunities.

Therefore, it would be of great value for both the couriers and
the logistics company if we can infer the delivery time. Fortunately,
a courier’s PDA also records his/her locations during the working
hours as shown in Figure 1(a), which provides a chance to infer
the delivery time automatically. Intuitively, a courier would stay

https://doi.org/10.1145/3394486.3403332
https://doi.org/10.1145/3394486.3403332


(a) Inaccurate Delivery Locations. (b) Various Stay Scenarios.

Figure 2: Challenges to Infer the Delivery Time.

at a location for a while when he/she is delivering a parcel, thus
generating a stay point [13]. A straightforward solution would be to
extract the delivery time based on the stay points of the trajectories.

However, in our preliminary data analysis, there are many excep-
tions between the stay points and delivery locations. For example,
Figure 1(b) shows the point distribution of a trajectory in a region,
where circles are GPS points of a courier’s trajectory; and trian-
gle markers are the Geocoded waybill locations, which are parsed
from the plain text shipping addresses via Geocoding services 1.
According to the figure, there are many more trajectory stay points
than the Geocoded waybill locations, and many Geocoded waybill
locations are not always close to the stay points. Thus, it is not
possible to infer the delivery time directly from stay points due to
the following two main challenges:
• Inaccurate delivery locations. According to the delivery time
of each waybill annotated by couriers, we can find its delivery
caused stay point in the trajectory. We plot the distribution of
the distance between the Geocoded waybill location and the
centroid of such stay point in Figure 2(a). It shows that most of
the Geocoded waybill locations have some distance shifts to the
delivery caused stay points2. Therefore, for each waybill, we can
not treat the Geocoded waybill location as the delivery location,
and infer the delivery time based on the closest stay point to it.
• Various stay scenarios. Even if we find the closest stay point
to the true delivery location, we still cannot say that the parcel
is delivered at that stay point. The reason is that a courier might
stay at a location for various reasons. As shown in Figure 2(b), a
courier might stay when he is calling the customers, waiting for
the traffic lights, or picking up parcels from customers.
To this end, we design, implement and deploy a delivery time

inference system, Delivery Time Inference (DTInf), which can au-
tomatically infer the delivery time of each completed waybill based
on couriers’ trajectories. The proposed system contains three main
components: 1) Data Pre-processing, which cleans trajectories from
couriers, detects stay points, and separates stay points and waybills
by delivery trips; 2) Delivery Location Correction, which corrects
the Geocoded waybill locations based on their historical deliveries
to them; and 3) Delivery Event-based Matching, which forms several
delivery events by grouping waybills according to their delivery
locations, and matches each delivery event with the most likely
stay point in its neighborhood. Our contributions are four folds:
1https://en.wikipedia.org/wiki/Geocoding
2In our study region, there does not exist express cabinets, which are usually placed at
the entrances of residential areas. Cabinets could make the shifts even larger.

• We present the first attempt to formalize the delivery time infer-
ence problem based on trajectories and identify its challenges.
• We propose a three-stage delivery time inference solution DTInf,
which not only overcomes the distance shifts of delivery locations,
but also takes various factors into the inference modeling.
• Experiments as well as case studies on real-world datasets from
JD Logistics show the effectiveness of our proposed method.
Results show that DTInf outperforms the best baseline by 31.8%.
• A system based on DTInf is deployed in JD Logistics and used
internally.

2 OVERVIEW
2.1 Preliminaries
Definition 1 (Waybill). A waybill is a parcel delivery task as-
signed to a courier, denoted as a 4-tuple𝑤 = (𝑙𝑎, F𝑝 , 𝑡𝑟 , 𝑡𝑑 ). 𝑙𝑎 is the
Geocoded waybill location of the shipping address, F𝑝 are features
of the parcel, e.g., the weight and the volume, 𝑡𝑟 is the timestamp,
at which a courier receives the parcel, and 𝑡𝑑 is the delivery time.

We note that the shipping address in plain text is not available
in this study due to privacy protection issues. The delivery time 𝑡𝑑
normally needs to be manually recorded by couriers. In this study,
we aim to infer 𝑡𝑑 so as to reduce couriers’ burden of recording it.

Definition 2 (Delivery Location). A delivery location is a spatial
point, denoted as 𝑙𝑑 = (𝑥,𝑦), where a courier gives the parcel to
the corresponding customer, or leaves it at an express cabinet.

Definition 3 (Trajectory). A trajectory is a sequence of spatio-
temporal points, denoted as 𝑡𝑟 =< 𝑝1, 𝑝2, ..., 𝑝𝑛 >, where each
point 𝑝 = (𝑥,𝑦, 𝑡) indicates the physical presence at a location
(𝑥,𝑦) (e.g., longitude and latitude) at time 𝑡 . Points in a trajectory
are organized chronologically.

Definition 4 (Stay Point). A stay point is a subsequence of the
trajectory, which semantically means that a moving object stays
in a geographic region for a while. Formally, given a distance
threshold 𝐷𝑚𝑎𝑥 and a time threshold 𝑇𝑚𝑖𝑛 , < 𝑝𝑖 , 𝑝𝑖+1, ..., 𝑝 𝑗 > is
called a stay point 𝑠𝑝 if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖 , 𝑝𝑘 ) ≤ 𝐷𝑚𝑎𝑥 (∀𝑘 ∈ [𝑖 + 1, 𝑗]),
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑖 , 𝑝 𝑗+1) > 𝐷𝑚𝑎𝑥 (if 𝑗 < 𝑛), and |𝑝 𝑗 .𝑡 − 𝑝𝑖 .𝑡 | ≥ 𝑇𝑚𝑖𝑛 . The
time interval of a 𝑠𝑝 is [𝑝𝑖 .𝑡, 𝑝 𝑗 .𝑡].

The location of a 𝑠𝑝 is estimated using its spatial centroid:

𝑠𝑝.𝑥 =

∑𝑗

𝑘=𝑖
𝑝𝑘 .𝑥

𝑗 − 𝑖 + 1 and 𝑠𝑝.𝑦 =

∑𝑗

𝑘=𝑖
𝑝𝑘 .𝑦

𝑗 − 𝑖 + 1 (1)

The time of a 𝑠𝑝 is defined as the middle point of its time interval:

𝑠𝑝.𝑡 = 𝑝𝑖 .𝑡 +
𝑝 𝑗 .𝑡 − 𝑝𝑖 .𝑡

2 (2)

Particularly, if a stay point is caused by a delivery, we call it a
delivery caused stay point. In historical data, it can be identified
by checking whether there is a parcel delivered during the time
interval of the stay point based on the delivery time of the waybill.

Definition 5 (Delivery Trip). A delivery trip is a process that a
courier delivers a batch of parcels to customers.



2.2 Problem Definition
We aim to infer the delivery time for parcels in each delivery trip
based on stay points in couriers’ trajectories. We assume that a
courier should report the parcels failed to be delivered (or success-
fully delivered) after the trip. Therefore, we know those waybills
whose delivery time could be inferred.

We propose to identify for a waybill the stay point, at which
the parcel of the waybill is delivered, and then use its time as the
inferred time of the waybill. There are two reasons for this strategy:
• Short delivery stay: According to delivery caused stay points, the
average delivery duration is 13 minutes, and for 80% waybills,
the delivery duration does not last for longer than 20 minutes as
shown in Figure 3(a). Such granularity is acceptable for target
applications, e.g., customer available time discovery.
• Anonymized shipping address: One or more parcels can be deliv-
ered at the same stay point. However, Geocoding anonymizes
the detailed floor information of shipping addresses as shown
in Figure 3(b). Therefore, there is no guidance for deciding the
orders by which the waybills are finished. Thus, it is impossible
to infer finer-grained time.

(a) Delivery Stay Duration Distribution.

7-01, 
Building 2, XX

4-05, 
Building 2, XX

2-01, 
Building 2, XX

(b) Anonymized Shipping Addresses.

Figure 3: The Motivations of Problem Formulation.
Therefore, the problem of inferring the delivery time of a waybill

is transformed to be one of identifying the delivery caused stay
point for the waybill. We define the problem as follows:

Given courier’s stay points 𝑆𝑃 = {𝑠𝑝 𝑗 | 𝑗 ∈ 1, ..,𝑚} detected from
the trajectory of a delivery trip, and the waybills𝑊 = {𝑤𝑖 |𝑖 ∈ 1, ..., 𝑝}
he/she completed in the trip, the objective is to match each waybill𝑤𝑖

with its delivery caused stay point 𝑠𝑝 𝑗 .

2.3 System Framework
The system framework of DTInf is elaborated in Figure 4, consisting
of three components:
Data Pre-processing. This component takes couriers’ trajecto-
ries and waybills and performs three main tasks: 1) Noise Filtering,
which removes the outlier GPS points; 2) Stay Point Detection, which
detects all the stay points from the trajectories; 3)Delivery Trip Iden-
tification, which separates waybills and stay points by the identified
delivery trips (detailed in Section 3).
Delivery Location Correction. This component takes historical
waybills and stay points, and generates the location mapping from
the Geocoded waybill location to the delivery location 3. It includes
three steps: 1) Inverted Indexing, which finds all historical delivery
3We assume a Geocoding waybill location corresponds to one delivery location. If the
plain text shipping addresses are available, we can correct based on buildings.
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Figure 4: System Framework.

caused stay points for each Geocoded waybill location; 2) Location
Inference, which infers the raw delivery location based on the in-
verted index; 3) Location Refinement, which refines the raw delivery
location by merging it with its nearby delivery locations discovered
by other Geocoded waybill locations (detailed in Section 4).
Delivery Event-based Matching. This component takes the stay
points and waybills in a trip, and identifies the most likely delivery
caused stay point for each waybill. Two steps are conducted: 1)
Delivery Event Construction, which uses the location mapping to
group waybills based on the corrected delivery location, where
each grouped waybills are called a delivery event; 2) Stay Point Se-
lection, which selects the best-matched stay point for each delivery
event, and waybills in each delivery event share the same stay point
matching result (detailed in Section 5).

3 DATA PRE-PROCESSING
In this component, trajectories are cleaned and stay points are
extracted. Then the stay points and waybills are separated and
organized by identified delivery trips.

3.1 Noise Filtering
The trajectories generated by a courier’s PDA usually contain noise
points. For example, as shown in Figure 5(a), the error of 𝑝4 and
𝑝7 might be several hundred meters away from its true location.
Such noise points would affect the quality of stay point detection.
A heuristic-based approach proposed in [31] is used to filter noise
points in trajectories. The algorithm sequentially calculates the
traveling speed for each point in a trajectory based on its precur-
sor and itself. If the speed is larger than a threshold, the current
examined point is removed from the trajectory. In this example, if
𝑣34 and 𝑣67 are larger than the speed threshold, they are removed
from the trajectory. The speed threshold is set to 54km/h since the
moving speed of a courier would rarely exceed this threshold.

3.2 Stay Point Detection
Based on the cleaned trajectories, we extract all stay points from
them. We use stay points not only to infer the delivery time, but
also to find the real delivery locations. The stay point detection
algorithm proposed in [13] is employed. The algorithm first checks
if the distance between an anchor point and its successors in a
trajectory is larger than a given threshold 𝐷𝑚𝑎𝑥 . In the example
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Figure 5: Trajectory Pre-processing.

shown in Figure 5(b), 𝑝3 is the current anchor point, and 𝑝4 to
𝑝6 are its successors within 𝐷𝑚𝑎𝑥 . It then calculates the duration
between the anchor point and the last successor within 𝐷𝑚𝑎𝑥 (𝑝3
and 𝑝6). If the duration is larger than the given temporal threshold
𝑇𝑚𝑖𝑛 , a stay point is detected (𝑝3 to 𝑝6), and the anchor point moves
to the next point after the current stay point (𝑝7). Otherwise, the
anchor point moves forward by one (𝑝4). This process is repeated
until the anchor point moves to the end of the sequence. The algo-
rithm has the chance to generate stay points that are temporally
consecutive, which makes little difference for the delivery time
inference. Therefore, we also merge those consecutive stay points.
We tried different parameter combinations and found that most
delivery time of waybills can be included in stay points when we
set 𝐷𝑚𝑎𝑥 = 20𝑚 and 𝑇𝑚𝑖𝑛 = 30𝑠 .

3.3 Delivery Trip Identification
According to workloads, a courier can have one, two, or several
delivery trips each day. For example, a normal workday usually
contains 2 trips, while a promotion day (e.g., "6.18", Double 11)
might contain 3∼4 trips given the tremendous workloads. A courier
will start a delivery trip after he/she receives the newly arrived
parcels. Figure 6 shows the (normalized) number of parcels received
and delivered by a courier during a day for a normal workday and
a promotion day. It is noticeable that the number of sharp increases
and the time of sharp increases of the parcel receiving curve are
dynamic due to the upstream logistics arrangements, which further
influences the start time of the delivery trip.

We propose to identify delivery trips of a courier based on the
following two rules: 1) a trip begins when the number of receiv-
ing parcels stops increasing, and the number of delivering parcels
begins to increase; and 2) a trip ends if the opposite condition holds.

(a) A Normal Workday. (b) A Promotion Day.

Figure 6: #Waybills Received&Delivered w.r.t. Time of Day.

Based on the identified delivery trips, we separate the waybills
and stay points by the delivery trips that contain them.

4 DELIVERY LOCATION CORRECTION
In this component, we infer the delivery location for each Geocoded
waybill location, so that we can model the delivery events more
accurately based on the corrected locations in the later component.
Motivation. Given that the deviation from the Geocoded waybill
location and the true delivery location distributes arbitrarily as
shown in Figure 2(a), it is difficult to set a global consistent judgment
about which stay point might be the delivery caused stay point
of a certain waybill if we treat the Geocoded waybill location as
the delivery location. Fortunately, because a customer might place
orders multiple times using the same shipping address, a Geocoded
waybill location might appear several times. Figure 7(a) shows the
distribution of the number of delivery trips at a Geocoded waybill
location during a period of 15 months. It is noticeable that for
72% Geocoded waybill locations, there exist multiple deliveries.
Besides, those locations can also appear in the future. As shown
in Figure 7(b), the Geocoded waybill locations of waybills in the
previous 4 months cover more than 80% Geocoded waybill locations
in the last month. Therefore, it is valuable if we can infer the delivery
location for each Geocoded waybill location appeared in history to
improve the time inference in the future.

(a) #Trips at a Geocoded Location. (b) Geocoded Waybill Location Overlap.

Figure 7: Feasibility of Delivery Location Correction.

Main Idea. The delivery location correction mainly consists of
three steps: 1) Inverted Indexing, which stores all historical delivery
caused stay points for each Geocoded waybill location; 2) Location
Inference, which infers the raw delivery location; 3) Location Refine-
ment, that clusters the raw delivery locations which are spatially
very close to generate the final delivery location. This is inspired
by two insights discovered in the dataset:
• Multiple delivery caused stay points: Figure 8(a) shows 3 delivery
caused stay points (points with the same color belong to one stay
point) of a Geocoded waybill location (in the purple circle) in
different trips. It is noticeable that although those stay points are
quite close, there are still minor differences. If all stay points are
leveraged, the delivery location correction can be more accurate.
• Redundant Geocoded waybill locations: Due to different Geocoding
data sources, data source updates, and/or inaccurate plain text
addresses input in history, redundant Geocoded waybill locations
might be generated. Figure 8(b) shows twowaybills with different
Geocoded locations that are from different trips. It can be noticed
that their delivery caused stay points have considerably large
overlaps, which indicates they potentially correspond to the same
delivery location. If we only infer the delivery location for each
Geocoded waybill location individually, those delivery locations



have high possibility to be distinct even though they are spatially
very close. As a result, we may have different delivery locations
for those waybills even if they are completed during the time
interval of the same stay point.

(a) Multiple historical stay points. (b) Redundant Geocoded locations.

Figure 8: Insights of Delivery Location Correction.
The pseudo code of the delivery location correction is presented

in Algorithm 1, which takes historical trips𝑇𝑅 and a distance thresh-
old 𝐷 , and returns the location mapping R from the Geocoded
waybill location to the delivery location. We first build the inverted
indexM to store the delivery caused stay points for each Geocoded
waybill location 𝑙𝑎 by iterating over all historical trips. In each trip
𝑡𝑟 , we iterate over waybills delivered during the trip, i.e., 𝑡𝑟 .𝑊 , and
find the delivery caused stay point for each waybill𝑤 by querying
trip stay points 𝑡𝑟 .𝑆𝑃 with the delivery time𝑤.𝑡𝑑 (Line 2-5). Note
that, we only store unique stay points for each 𝑙𝑎 to avoid adding
duplicated stay points given multiple waybills in one delivery loca-
tion for each trip. Then, for each index key 𝑙𝑎 inM, we infer the
raw delivery location using the centroid of its delivery caused stay
points, and store the location mapping to the hashmapA (Line 6-7).
Next, a hierarchical clustering algorithm [22], which is denoted as
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (·, ·), is applied on all discovered raw delivery locations to
form several clusters bounded by a given distance threshold 𝐷 . The
clustering algorithm first treats each raw location as a cluster, and
then iteratively merges two clusters with the minimum distance to
form a new cluster, until there does not exist two clusters whose
distance is smaller than 𝐷 . The clustering resultH stores the map-
ping from the raw delivery location to its cluster centroid (Line 8).
Eventually, the final delivery location for each 𝑙𝑎 is the centroid
of the cluster, which includes the raw delivery location. The final
location mapping is stored in R and returned (Line 9-11).

Algorithm 1 Delivery Location Correction.
Input: The historical trips𝑇𝑅; the distance threshold 𝐷 .
Output: The location correction mapping R.

1: M ← ∅; A ← ∅; R ← ∅;
2: for 𝑡𝑟 ∈ 𝑇𝑅 do; ⊲ Inverted Indexing
3: for 𝑤 ∈ 𝑡𝑟 .𝑊 do
4: 𝑠𝑝 ← 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑞𝑢𝑒𝑟𝑦 (𝑡𝑟 .𝑆𝑃, 𝑤.𝑡𝑑 ) ;
5: M[𝑤.𝑙𝑎 ] ← M[𝑤.𝑙𝑎 ] ∪ {𝑠𝑝 };
6: for 𝑙𝑎 ∈ M do ⊲ Location Inference
7: A[𝑙𝑎 ] ← 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (M[𝑙𝑎 ]) ;
8: H ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ( {A [𝑙𝑎 ] |∀𝑙𝑎 ∈ A}, 𝐷) ; ⊲ Location Refinement
9: for 𝑙𝑎 ∈ A do
10: R[𝑙𝑎 ] ← H[A[𝑙𝑎 ] ];
11: return R;

5 DELIVERY EVENT-BASED MATCHING
In this component, we infer the delivery time for each waybill in
a delivery trip by performing the delivery event-level stay point
matching, which is based on the aforementioned location mapping
mined from the historical data. We first introduce how to construct
the delivery events, and then describe the matching strategy.

5.1 Delivery Event Construction
Instead of handling each waybill separately, we group waybills
into several delivery events according to their corrected delivery
locations. Then, in the later step, we can select the most probable
stay point for each delivery event based on its delivery location,
and assign that stay point to all waybills in that event.

Note that during the online inference phase, theremay exist some
Geocoded waybill locations that have never appeared in history. In
such cases, we directly group waybills according to their Geocoded
waybill locations to construct the delivery event.

The reasons to perform the delivery event-level matching for
waybills in a trip are two folds:

• Location by location delivery: A courier usually continuously
delivers several parcels at the same delivery location, e.g., a resi-
dential building. For a delivery location in each trip, we can find a
stay point that is the most frequently matched by waybills at that
location. We call such stay point as themain stay point of that de-
livery location in that trip. The pie chart in Figure 9(a) shows that
93.6% waybills match to the main stay points (𝐷 = 3𝑚). Though
there are still 6.4% waybills matching to other stay points, their
delivery time differences with respect to the main stay points are
small as the histogram shows. Therefore, if we perform the deliv-
ery event-level matching and correctly infer the main stay point
for each delivery event, the time inference errors for waybills are
acceptable.
• Correlations between delivery events and stay points: The parcels
delivered at the same delivery location will affect the character-
istics of the stay point. The box plot in Figure 9(b) shows the
duration distribution with respect to different number of cus-
tomers at a delivery location. It is obvious that a courier would
stay longer if he/she needs to deliver for more customers. Such
characteristics cannot be captured if we perform the inference
task for each waybill individually.

(a) Waybill Matching Distribution. (b) Duration w.r.t #Customers.

Figure 9: Insights of Delivery Event Construction.



5.2 Stay Point Selection
After we construct several delivery events in a trip, we issue a
spatial range query to find stay points within a certain radius for
each delivery event, and then our task is to select a stay point,
which corresponds to the main stay point of that delivery event.

Given the various stay scenarios as shown in Figure 2(b), we
propose to use a model to capture the correlation between delivery
events and the main delivery caused stay points, and ultimately
improve the inference accuracy. We model the stay point selection
as a binary classification problem. For a delivery event and one stay
point in its neighborhood, we extract features of them and predict
whether the stay point is the main delivery caused stay point of the
delivery event. We use a MLP [8] as our classifier, whose output
gives a probability between 0 and 1. The cross entropy loss is used
during the training. In the inference phase, for each delivery event,
we select the stay point in its neighborhood, which gives the highest
probability. The following four types of features are extracted:
• Location features: We obtain the POI category of the Geocoded
waybill location via the reverse Geocoding service, which is
encoded by the one-hot vector.
• Delivery event features: We extract four aggregated information
from the delivery events of waybills, namely, the number of
waybills, number of customers, total weight, and total volume.
• Stay point features: We extract the duration and the area of the
stay point.
• Matching feature: The geographical distance between the centroid
of the stay point and the delivery location is extracted.
We also train a different model which does not employ the match-

ing feature. During the online inference, suchmodel is used to select
stay points for delivery events whose delivery locations cannot be
corrected, since the distance between the Geocodedwaybill location
and the delivery caused stay point can be arbitrary.

After the stay point is selected for each delivery event based on
the stay point selection model, the time of stay point is used as the
inferred delivery time for all waybills in the delivery event.

6 EXPERIMENTS
6.1 Experimental Settings
Datasets. The datasets contain trajectories and waybills of 5 couri-
ers at a delivery station in Tongzhou District, Beijing over a period
of about 15 months (from Apr. 12nd, 2018 to Jul. 7th, 2019).
• Couriers’ trajectories. They are raw GPS logs generated by
couriers’ PDAs, where each record contains a courier ID, a loca-
tion, and a timestamp. The average sampling time interval is 7.4
seconds. The datasets contain 5.93 million GPS points.
• Waybills. Each record contains a customer ID, a courier ID,
parcel information (e.g., weight and volume), the time when the
parcel is received, the time when the parcel is delivered, and a
Geocoded waybill location. The datasets contain 274 thousand
waybills. Besides, there are 16 POI categories we obtained via the
reverse Geocoding service.
After the data pre-processing step, waybills and stay points de-

tected from trajectories are organized by delivery trips. The trips
without trajectories are dropped. There are 3,653 delivery trips in
total. For each courier, we use his/her former 80% trips for training,

the following 10% trips for validating, and the last 10% trips for
testing. The delivery location correction is conducted based on the
training and validation trips, which contain 2,506 unique Geocoded
waybill locations. 87.1% Geocoded waybill locations in the test trips
appear at least once in former trips.
Evaluation Metrics.We use the accuracy, which is defined as the
proportion of waybills whose corresponding delivery caused stay
points are correctly classified (i.e., their inferred delivery times are
accurate). We also report the RMSE and the MAE based on the
inferred delivery time and the time of delivery caused stay points.
Baselines. To the best of our knowledge, there is no existing solu-
tion that can exactly tackle our problem. Therefore, we design the
following three baselines for comparison:
• Random Inference (RDInf): We randomly select a stay point from
each waybill’s neighborhood as its delivery caused stay point.
• Spatial Nearest Inference (SNInf): SNInf matches each waybill
with its closest stay point in its neighborhood.
• Temporal Longest Inference (TLInf): TLInf selects the stay point
in waybill’s neighborhood with the longest duration.

Variants. We also compare DTInf with its three variants:
• DTInf-nC: This variant does not correct the delivery locations.
The model is trained based on the Geocoded waybill locations.
• DTInf-nM: This variant corrects the locations, but it selects the
stay point that is the closest to the corrected location.
• DTInf-nE: This variant also corrects the location, but it does not
construct delivery events. Instead, it infers delivery caused stay
point for each waybill based on the same model, but the delivery
event features are replaced with individual waybill features.

Parameter Settings. The query radius 𝑅 is set to 70𝑚 in order to
cover all delivery caused stay points according to Figure 2(a). Our
MLP for the stay point selection contains 3 layers, and the hidden
layer contains 16 hidden units.
Implementations.Our algorithms are implemented in Python. Ex-
periments are conducted on aworkstationwith an Intel(R) Core(TM)
CPU i7-8700K @ 3.7GHz, 32GB memory, and Windows 10 OS.

6.2 Data Descriptions
Delivery Trip Distribution. Figure 10 gives the distribution of
the trip duration and the trip length detected from the delivery
trip identification step in Section 3.3. Figure 10(a) shows that the
average duration of a delivery trip is about 3.2 hours, and the
maximal duration does not exceed 7 hours, because a courier needs
to go back to the station to receive newly arrived parcels after a
certain time period. Figure 10(b) illustrates the average length is 8.3
km. Since a courier is assigned to deliver parcels for some regions
that are spatially close, the length of the trip usually is not long.
Waybill Distribution. Figure 10(c) and 10(d) show the distribution
of the number of waybills and unique Geocoded waybill locations in
each delivery trip, respectively. As can be observed, a courier needs
to deliver 52 waybills in each delivery trip on average. Since some
waybills are in the same building, or belong to the same customer,
there are 22 unique Geocoded locations to be delivered on average.
Stay Point Distribution. Figure 10(e) shows the distribution of
the number of stay points in each delivery trip. The average number
of stay points is 34, which is larger than the average number of
Geocoded waybill locations. It validates our claim that a courier



(a) Trip Duration Distribution. (b) Trip Length Distribution.

(c) Waybill Distribution. (d) Geocoded Location Distribution.

(e) Trip Stay Point Distribution. (f) Candidate Stay Point Distribution.

Figure 10: Dataset Descriptions.
stays at a location during a delivery trip not only because of the
delivery, but also for some other purposes. We also plot the distribu-
tion of the number of stay points near each waybill in Figure 10(f).
As shown in the figure, 81% waybills contain more than one stay
point in their neighborhood (𝑅 = 70𝑚), which implies that the stay
point selection is necessary.

6.3 Effectiveness Evaluation
Merging Distance Selection. In order to model the delivery event
accurately, we first select an appropriate location merging param-
eter 𝐷 by varying it from 0m (no merging) to 5m. The stay point
selection accuracy is reported in Figure 11(a), which shows the
accuracy first increases and then drops. The reason is that when
𝐷 becomes larger, redundant Geocoded waybill locations are cor-
rected to the same delivery locations, which makes the delivery
event modeling more accurate. However, when 𝐷 is larger than 3m,
the performance is degraded, because we might merge adjacent
delivery locations by mistake. We also report the ratio between the
number of detected delivery locations and Geocoded waybill loca-
tions (denoted as the compression rate) in the same figure. It shows
that the compression rate is decreasing quickly, which also demon-
strated the redundancy issue. Therefore, we set 𝐷 = 3m. We also
plot the distribution of the distance shifts of correction locations
with respect to the delivery caused stay points in Figure 2(a).
Overall Evaluation. The overall performance of DTInf compared
with baselines and variants is shown in Table 1. Among 3 baselines,

(a) Different Merging Distance. (b) Different Types of Waybills.

Figure 11: Effectiveness Experiments.

RDInf only achieves 41.0% accuracy. Comparing SNInf and TLInf,
we can find that the matching based on duration is a better heuristic.
DTInf outperforms the best baseline (TLInf) by 31.8% in terms of
MAE, and is better than either of its variants. Comparing SNInf
and DTInf-nM, we can see that after the locations are corrected,
a 22.3% performance gain is witnessed using the spatial nearest
heuristic. Comparing DTInf-nC and DTInf, we find that if the model
is trained based on the biased locations, its effectiveness is degraded.
Finally, the performance gaps between DTInf and DTInf-nM as well
as DTInf-nE show the superiority of the delivery event modeling
than using heuristics and modeling for each waybill individually.
We also note that if express cabinets exist in the delivery region,
the performance of non-correction-based methods (i.e., except for
DTInf-nM, DTInf-nE, and DTInf) could be even worse since a much
larger 𝑅 needs to be set in order to cover the delivery caused stay
point for each Geocoded waybill location, which brings more stay
point candidates. While the correction-based methods are less af-
fected, since our delivery locations are inferred based on couriers’
annotation, and the distance to the delivery location is considered.

Table 1: Comparison with Baselines.

Methods Accuracy (%) RMSE (s) MAE (s)
RDInf 41.0 2725.8 1254.5
SNInf 55.8 2361.5 868.9
TLInf 71.3 1713.4 588.1

DTInf-nM 62.6 2023.6 674.8
DTInf-nC 74.3 1518.5 470.8
DTInf-nE 74.8 1430.8 418.3

DTInf (ours) 75.5 1365.6 401.0

Different Types of Waybills. We are also interested in the per-
formance differences of DTInf when faced with waybills whose
Geocoded waybill locations have ever been seen or not. Figure 11(b)
shows that for waybills whose locations have never appeared in his-
tory, we achieve 68.8% accuracy, while 75.6% accuracy is witnessed
in the other case. It not only shows the effectiveness of the delivery
location correction, but also tells that even a waybill whose location
has never been delivered in history, we still have a high chance
to have an acceptable inference. Another interesting point is that
although there are only 87.1% Geocoded waybill locations appeared
in history, those waybills only correspond to 1.3% in total test way-
bills, which indicates that the locations that frequently place orders
have a high chance to appear in history, and the delivery location
correction is applicable to the majority of waybills.



6.4 Case Study
We further give a case study of a delivery trip on the morning of
Jun. 16th, 2019, which is one of the delivery trips in the evaluation
dataset. Figure 12 shows the satellite image of a region in Tongzhou
District. There is a waybill whose Geocoded location is displayed
with the red triangle. The blue dots are the centroids of stay points
detected from the courier’s trajectory of the corresponding delivery
trip, where the stay point with the longest duration in the neighbor-
hood is 𝑠𝑝4. However, according to the ground-truths, the parcel is
delivered during the time interval of 𝑠𝑝3, which leads to a great time
inference error. Fortunately, this Geocoded waybill location has
been delivered multiple times in history, so we are able to correct
it. The corrected location is shown with the green triangle, which
is much closer to the delivery caused stay point. Nevertheless, if
we just employ the spatial nearest heuristic, 𝑠𝑝18 would be inferred
as the matched stay point, which also leads to large inference error.
The DTInf successfully selects 𝑠𝑝3 among candidate stay points
because it considers various factors.

Centroid of Stay Point

Geocoded Waybill Location

Corrected Location

sp18

sp21
sp22

sp23

sp4 sp3(GT)

10:42(63.7min)

12:34 (0.6min)

10:03(13.9min)

Figure 12: Case Study.

7 SYSTEM DEPLOYMENT
Our delivery time inference system is deployed internally in JD
Logistics. In order to process massive couriers’ trajectories, we
leverage our self-developed platform, JD Urban Spatio-Temporal
Data Engine (JUST) [14], to efficiently perform the noise filtering
and the stay point detection in the distributed environment based
on Apache Spark and HBase. The spatio-temporal index is also built
over detected stay points based on JUST to accelerate the process
of querying stay points near the waybills. When running online,
our inference process is activated as soon as a courier ends his/her
trips and commits parcels he fails to deliver. For waybills whose
Geocoded waybill locations newly appeared, couriers would be
asked to record the delivery time optionally in order to correct the
delivery locations for better delivery time inference in the future.

The interface of our system is shown in Figure 13, which allows
operators to visualize couriers’ delivery trips and understand the
inference process. The interface contains four components:
Operation View. In this view, the operator can perform several
operations. There are fourmain buttons: 1) Retrieve, which is used to
query waybills and trajectories of a trip that is specified; 2) Correct,
which corrects the delivery location of waybills in the current trip;
3) Query, that issues spatio-temporal query to find stay points near

Figure 13: System Interface.

each waybill; and 4) Infer, that infers the delivery caused stay point
for each waybill.
Main Map View. The right part is the main map view. When the
delivery trip is retrieved, courier’s trajectories (grey line), stay point
centroids (blue circle), and Geocoded waybill locations (red trian-
gle) are visualized. After Correct is clicked, the corrected delivery
locations are displayed with the green circles, and the big red circles
indicate the querying neighborhood. Finally, when the operator
clicks Infer, a link would be generated between the corrected loca-
tion and the inferred delivery caused stay point.
Waybill Information View. This view displays detailed informa-
tion about the retrieved waybills. The waybill ID, the customer ID,
the weight and the volume are shown. If one of the waybills is
selected, the location of the waybill would appear within the map
view, and the inferred stay point will appear in the result view.
Result View. The view shows the detailed information of the in-
ferred stay point for the selected waybill. It displays the start time,
the end time, and the duration of the stay point.

8 RELATEDWORK

Trajectory Annotation. In this work, we essentially want to an-
notate some stay points in trajectories with parcels delivered during
the time interval of them, which is related to the trajectory annota-
tion. The trajectory annotation aims to enrich trajectories with the
semantic information [1]. The annotation techniques are mainly
concerned with annotating trajectories with maps [2, 5, 17, 19, 23,
25] and recognizing the transportation modes [6, 33]. Annotating
moving trajectories with roads is also known as the map match-
ing [17, 25]. Annotating stay points with POIs is usually based on
the geometric intersection or the spatial nearest neighbor [2, 5].
Many candidate POIs may exist in some densely populated urban
areas, therefore, Yan et al. [23] attempted to infer the POI cate-
gories based on a Hidden Markov Model to maximize the visiting
sequential probability. Keles et al. [12] predicted POI categories
using a Bayesian Network, which considers the time of the day,
the day of the week, and the duration of the stay point. Suzuki et
al. [19] inferred the exact POIs a user visited under the integer linear
programming framework, which also considers various features
from POIs and stay points. For the POI assignment tasks, the stay
duration differences are usually caused by different POI categories,



while in our problem, the number of customers at a delivery loca-
tion plays the dominant role. Apart from that, for the trajectory
annotation, a specific POI would be annotated for multiple times or
not be assigned, both of which are not acceptable in our scenario.
Trajectory Data Mining. The trajectory data mining [31] stud-
ies discovering various knowledge from massive trajectory data.
To enhance the existing maps, [9, 18, 21, 29] studied the road net-
work generation or refinement based on crowd sourced trajectories,
and [3, 30, 34, 35] studied discovering interesting places from tra-
jectory hotspots. To help urban planning, [4, 28] gave the bike path
lane planning or electric fence construction recommendation. To
increase the commercial profits, [15, 27] aimed to select the best
location for the billboard placement. To improve the user experi-
ence, [11, 34] studied the traveling recommendation. In this work,
we discover the delivery locations based on trajectories and the
recorded delivery time, which are further used to help the delivery
caused stay point recognition.
Urban Computing. Urban computing [32] aims to solve the is-
sues caused by human’s rapid progress in urbanization, such as
anomaly detection [7, 26], crime rate inference [20], air quality
prediction [24], and resource rebalancing [10, 16]. In our work, we
focus on easing the burden of couriers by automatically inferring
the delivery time based on their trajectories.

9 CONCLUSION
In this paper, we propose DTInf, a system to infer the delivery time
based on couriers’ trajectories. Our method first separates waybills
and stay points detected from trajectories by delivery trips, then
corrects delivery locations of waybills, finally constructs delivery
events for waybills based on corrected locations, and predicts the
delivery caused stay point for each event, which is further used to
infer the delivery time. Experiments show our method significantly
outperforms baselines by at least 31.8%. And a case study is further
conducted to illustrate the advantage of our solution. Finally, a
system is deployed in JD Logistics.
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