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Abstract—We propose a novel two-step mining and optimiza-
tion framework for inferring the root cause of anomalies that
appear in road traffic data. We model road traffic as a time-
dependent flow on a network formed by partitioning a city into
regions bounded by major roads. In the first step we identify
link anomalies based on their deviation from their historical
traffic profile. However, link anomalies on their own shed very
little light on what caused them to be anomalous. In the second
step we take a generative approach by modeling the flow in a
network in terms of the origin-destination (OD) matrix which
physically relates the latent flow between origin and destination
and the observable flow on the links. The key insight is that
instead of using all of link traffic as the observable vector
we only use the link anomaly vector. By solving an L1 inverse
problem we infer the routes (the origin-destination pairs) which
gave rise to the link anomalies. Experiments on a very large
GPS data set consisting on nearly eight hundred million data
points demonstrate that we can discover routes which can
clearly explain the appearance of link anomalies. The use of
optimization techniques to explain observable anomalies in a
generative fashion is, to the best of our knowledge, entirely
novel.

I. INTRODUCTION

The flow of traffic on a road network is a complex
phenomenon. A small event can cause a dramatic change in
the flow and can propagate in an uneven manner throughout
the system. The challenge from a data mining perspective
is that a historical archive of traffic flow usually does not
explicitly contain a description of events which may have
caused perturbations in the system. While existing data
mining techniques (especially anomaly detection ) can be
applied to mine for deviations, there is no known systematic
way to piece together the mined anomalies to infer events
which may have caused the anomalies to occur.
To give a concrete example, consider the setting shown
in Figure 1 about Beijing’s road network. Our objective
was to find interesting patterns from GPS data obtained
from Beijing’s taxi cabs. We first applied PCA to search
for anomalous links connecting two regions, based on their
historical pattern. An example of a discovered anomaly is
shown as a red (bold) arrow. On its own it is difficult to
explain why the discovered anomaly would be interesting.
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Figure 1. Bold (red) links were discovered using Principal Component
Analysis (PCA) techniques for anomaly detection. Relationship between
links and routes was captured using the link-route matrix. Routes were
inferred using L1 optimization techniques. It became easier to explain
the route anomaly because of the re-routing of traffic due to the Beijing
marathon. This overall increases the precision of the discovery process.

However, in the next step we combined links with routes
using a link-route matrix and then used L1 optimization
techniques to infer routes which may have caused the
anomalous links to appear. This is shown as a green (dashed)
path. The discovery of the anomalous route helps put the
data mining exercise in perspective and explain the anomaly.
As it turned out, on April 17th, 2011, traffic in Beijing had
been diverted away from Tiananmen Square because of the
Beijing marathon. Thus the normal traffic route (shown as
dotted path) from region r1 to the Beijing South Railway
Station was diverted and the dashed (green) path witnessed
excess traffic. The automatic discovery of anomalous routes
caused by diversion in traffic can now be used for future
planning by the city road authority. The relationship between
the anomalous links and the routes (which may have caused
them), helps increase the precision of the discovery process.
We will give several more real examples in the Experiment
and Evaluation section.

We make the following contributions:
1) We propose a novel two-step mining and optimization

framework to infer events which may have caused
anomalous behaviour to appear in road traffic flow.



2) We model and study the traffic between regions rather
than on road surfaces. This not only reduces the com-
plexity of the model but also helps with the detection
of the root cause of traffic anomalies.

3) We validate our framework using a large GPS trace
consisting of nearly eight hundred million data points.
Using our approach we were able to infer real events
which caused perturbations in the traffic flow. Infor-
mation about these events was not part of the original
data set.

The rest of the paper is organized as follows. In Section
2 we define the problem and set up the notation. In Section
2 we explain our methodology which combines the use
of anomaly detection with optimization techniques. The
experimental setup and evaluation is described in Section
4. We overview related work in Section 5. We conclude in
Section 6 with a summary and directions for future work.

II. TRAFFIC MODELING

We model a road network as a directed graph N =
(V,L)) where V is the set of regions bounded by major
roads and L is the set of directed links that connect two
regions. For now we will assume that both V and L are
fixed but later we will see that the set L can change as a
function of time.

As demonstrated in Figure 2(A), the region map of Beijing
is partitioned by major roads. Each region is modeled as a
node of a graph [16]. To define the links we first observe
the flow of taxis and based on parameters (defined later),
connect two regions with a link if sufficient taxi flow
exists between the two regions for a given time window.
Example flows are shown in (B). Based on the flows we
define routes or paths between regions. For example in
(C), paths which end in region r4 are shown. The abstract
graph which captures regions and links between them is
shown in (D). The decision to model regions (rather than
say traffic intersections) was based on two considerations.
The first is that regions (bounded by major roads) have a
semantic coherence. For example a region could represent
a business zone, shopping district, a cluster of a higher
education entities or residential locations. Each of these
semantic zones have their unique mobility patterns. For
example, if a link connecting a residential area to a shopping
district shows abnormally high traffic compared to usual
then that is an indicator that the anomaly is probably due
to a holiday. We have found several such anomalies and
they will be reported in the Experiment section. The second
reason for modeling regions is efficiency and handling data
inaccuracies. The region graph is substantially smaller and
furthermore the inaccuracies of GPS sensors can be averaged
out when we deal with larger regions. More details about
the segmentation algorithm to form regions and inferring
the semantic function of regions can be found in [16].

Term Notation Descrption
Link-Route Matrix AAA {0 − 1} binary matrix
Link Time Matrix LLL Real-valued matrix
The link anomaly vector bbb {0, 1} vector
PCA eigenvalues λi’s non-zero
PCA eigenvector vivivi’s real-valued
L1 norm ‖xxx‖1 |x1| + . . . |xn|
L0 norm ‖xxx‖0 non-zero |xi|’s
L2 norm ‖xxx‖2 |x1|2 + . . . |xn|2
The route vector xxx {0, 1} valued from Ax = bAx = bAx = b.
Path element pipipi a path connects o-d pair

Table I
IMPORTANT NOTATION THAT WILL BE USED IN THE PAPER

We capture the relationship between links and the routes
(paths) as a link-route binary matrix A. The entries of the
link-route matrix are given by

Aij =

{
1 if link i is on route j

0 otherwise

An example link-route matrix is shown in (E). The
distinguishing feature of the link-route matrix is that the
number of possible routes (n) is typically much greater than
the number of links (m). The traffic flow on a particular link
is a function of all the traffic that flows on routes that contain
that link. Thus if we associate a link flow vector b which
contains flow information of the traffic of links and x as the
flow vector of routes then under equilibrium conditions we
can model the relationship between the route flow vector x
and the link flow vector b as

Ax = b (1)

Using GPS technology we can monitor the flow of traffic
on links in a given time period. For example, the following
is an example of a link traffic matrix L across five time
periods:

t1 t2 t3 t4 t5
l1 10 20 10 20 10
l2 5 5 5 5 5
l3 20 10 50 70 80
l4 10 50 60 20 10
l5 12 20 30 40 50

The link matrix L and the adjacency matrix A will play a
crucial role in subsequent analysis. In our proposed two step
mining and optimization approach, we will first apply PCA
to mine for link anomalies from L. We will then apply L1

optimization techniques on Ax = b to infer possible routes
that may have caused the link anomalies. Table I lists the
important notation that is used throughout the paper.

III. METHODOLOGY

In this section we describe in detail the components of
our methodology to infer routes which may have caused the
link anomalies. In Section III-A we will describe the use of
Principal Component Analysis (PCA) to detect anomalies
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Figure 2. An example using traffic networks in the city of Beijing. Based on major roads in the traffic network, the entire city (subfigure (a)) is partitioned
into regions (subfigure (b)). Trajectories of moving objects (such as a moving taxi shown by a blue trajectory in subfigure (c)) connect neighboring regions,
based on which we create the notion of links (subfigure (d)).

from the link traffic matrix L. In Section III-B1 we will
explain the rationale behind the use of L1 minimization to
infer information about routes why may have caused link
anomalies.

A. PCA for Anomaly Detection

In this section we describe the use for Principal Compo-
nent Analysis (PCA) for anomaly detection.

PCA is a widely used dimensionality reduction and
lossy compression technique in Data Mining [15], [10].
PCA exploits the observation that in most explicitly high-
dimensional data sets, there is a high implicit correlation be-
tween many dimensions (variables) which can be inferred by
carrying out an eigen-decomposition of the data covariance
matrix. Before we explain the method is detail we provide
the high level idea behind the use of PCA.

PCA selects a new data-dependent basis for the data.
These basis are called the principal components. The first
basis element is in the direction of maximum variance, the
second in the direction of second highest variance and so
on. The principal components are the eigenvectors of the
covariance matrix of the data which is always symmetric
and semi-positive definite. It has been observed that for
most real data sets much of the variance will reside along a
small percentage of higher principal components (i.e., those
corresponding to higher eigenvalues). Thus by projecting the
data into the first few principal components, most of the
variance in the data can be preserved while simultaneously
reducing the dimensionality.

Now the basic intuition behind the use of PCA for
anomaly detection is that for a normal data point most of its
norm is concentrated in the subspace spanned by the higher
principal components. Contrapositively, if for a data point
most of its norm is concentrated in the subspace spanned
by the lower principal components then it is a candidate
anomaly!

Deciding the split which separates the higher eigenvalues
from the lower eigenvalues is often data dependent and is
one of the weaknesses of the PCA method. A conventional
approach is to use the eigenvectors of the top-k eigenvalues

for the normal subspace, where top-k captures around 95%
of the variance in the sample data.

The advantage of PCA is that both spatial and temporal
correlation can be captured by specifying the covariance
matrix structure appropriately. The disadvantage of PCA is
that separating the “normal” subspace from the “abnormal”
subspace is often arbitrary and the results are sensitive to
the choice made.

Consider the L matrix which consists of the evolutions of
link traffic over time. Here the rows are the links and the
columns are the time bins. The following steps need to be
carried out to determine candidate anomalies.

1) Let L̃ = L− μ, where μ is the column sample mean
matrix.

2) Form the matrix C = L̃T L̃. C is an t×t matrix where
t is the number of time intervals being used. For ex-
ample we could restrict the time to a few hours or the
full day depending upon the granularity of the analysis
required. Note that our choice of C is determined by
the fact that we will be searching for link anomalies
rather than time intervals which are anomalous (as is
the case in the networking community).

3) Compute the eigendecomposition of C, i.e., all
eigenvalue-eigenvector pairs (λi, vi), such that

Cvi = λivi

4) Order the pairs (λi, vi) in decreasing order of eigen-
values

λ1 ≥ λ2 ≥ . . . , λk, λk+1 = λk+2 = . . . λt = 0

5) Let Pn be the subspace [v1, . . . , vr] of Rt spanned by
the first r eigenvectors. Similarly Pa be the subspace
spanned by [vr+1, . . . , vt].

6) Project all data points onto Pa. Thus if x is a original
data point then denote by xa its projection in Pa

7) Define a threshold θ and select all links for which
‖x− xa‖ > θ as candidate anomalies.

Thus there are two important parameters which can have a
strong bearing on the selection of candidate anomalies. The
first is the choice of eigenvalue λr which will determine the



formation of the normal and abnormal subspace Pn and Pa.
The second parameter is the choice of θ to select candidate
anomalies.

1) Choice of Covariance Matrix: The choice of the
covariance matrix has an important bearing on the type of
correlations that are being captured by PCA. For example,
for the link matrix L, LLT captures the spatial correlation
between the links, while LTL will capture the temporal
correlation. We can also capture spatio-temporal correlation
by using the Karhune-Lowe transform. An interesting dis-
cussion on how the choice of the covariance matrix can
effect the subsequent analysis and interpretation can be
found in [2].

2) Example of PCA Anomaly Detection: We present a
small example to illustrate the use of PCA for anomaly
detection. Consider the 5× 5 link matrix shown in Section
2. For observation it is clear that l4 exhibits anomalous
behaviour as the traffic counts in time steps four and five
suddenly drops compared to its past counts and also vis-vis
the behaviour of other links.

To carry out a PCA analysis we first normalize the L
matrix and form the 5 × 5 LTL covariance matrix. An
eigendecomposition of the covariance matrix show that the
eigenvalues in decreasing order are

[1.9× 103, 0.67× 103, 0.02× 103, 0.01× 103, 0]

We choose the first eigenvector as the normal subspace
Pn and the remaining eigenvectors as the abnormal subspace
Pa. All the points are projected onto Pa and in this space
for all points we compute the square of the deviation from
the mean. These are

[0.4× 103, 0.06× 103, 0.5× 103,1.47× 1031.47× 1031.47× 103, 0.49× 103]

Thus the technique correctly identifies link 4 as the anomaly.

B. Inferring Routes from Anomalous Links
Have discovered the anomalous links using PCA as de-

scribed in the previous section, we now describe how we
can infer routes whose flow traffic may have caused the
anomalies.

The problem of inferencing origin-destination pairs and
routes from link traffic data has been intensively studied
both in the transportation and the networking (Internet)
community. In transportation research this problem is some-
times known as the observability problem and in networking
research it has often referred to as the network tomography
problem [5], [17]. There are two characteristics of this
problem that we highlight.

1) In equilibrium, the relationship between traffic flowing
on a route and links on the route is given by a simple
linear relationship

Ax = bAx = bAx = b

Here A is the {0, 1} link-route adjacency matrix, x
is the route vector of traffic flows and b is the vector

of flows on the links. To reiterate, this is an idealized
relationship which is hypothetically assumed to hold
in equilibrium. In practice there is time-dependency
between the origin-destination and link flows.

2) The system of equation Ax = bAx = bAx = b is under-constrained.
This is because the number of possible routes is
substantially greater than the number of links. This
implies that by itself there are infinitely many solutions
to the system of equations.

1) L0 and L1 Solutions: The problem that an under-
constrained system will result in infinitely many solutions
can be addressed by specifying the type of the solution that
is required by the application. For example, we can require
the returned solution to have small component values or be
sparse. We note that much of the recent interest in sparse
solution for systems of equations and compressed sensing
address exactly the issue that we will highlight [4].

A natural way to enforce sparsity is to use the L0 norm
which is defined as

‖x‖0 = |{xi|xi �= 0}|

One of the surprising results that has received prominent
attention lately is that if the L0 norm is replaced with the
convex L1 norm, ‖x‖1 =

∑
i |xi|, then the solution returned

can still be sparse.
To get an insight on why the L1 and L0 solution may

coincide we consider the simple case of the system

min ‖x‖0 s.t.a1x1 + a2x2 = b1

We can convert the L1 relaxation of the above equation
into a Linear Programming(LP) formulation. For ease of
exposition assume all components of the problem are non-
negative. By introducing an additional variable t the above
minimization problem can be expressed as

min t (2)
a1x1 + a2x2 = b1 (3)

x1 + x2 = t (4)

The LP is depicted in Figure 3. Now, since we are
minimizing t and want to satisfy the constraint at the same
time, the hyperplane x1 + x2 = t moves towards the fixed
constraint and stops the moment the constraint is satisfied.
Thus if a1 > a2, the moving hyperplane will touch the
constraint at the point (0, b1/a1) which is exactly one of the
lL0 solutions. Furthermore notice that for the L1 solution to
be sparse, the two constraints could not have been parallel
(or linearly dependent). In fact this turns out to be a crucial
condition to guarantee the sparseness of the L1 solution [3]



x1

x2 x1+ x2 = t

a1x1+ a2x2 = b1

l0 and l1 solution coincide

(b1/a2 ,0)

(0, b1/a1)
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problem is formulated as an LP then the hyperplane x1 + x2 = t moves
the least possible amount until it first touches the hyperplane constraint.

2) Discussion on L1 solution: As we will demonstrate
in the Experiment section, the L1 solution plays a key role
in selecting routes which may have caused the emergence
of anomalous links. The space of routes has a much greater
cardinality than the space of links. However, the L1 solution,
by being sparse, prevents the number of possible candidates
from exploding. Yet at the same time, information about
routes is much easier to interpret.

3) Example: L1 solution: Example: Using the link-path
matrix A given in Figure 2, and suppose link l2 and link l4
are anomalies. Then b = [0, 1, 0, 1, 0]T is the link anomaly
vector. The dimensionality of A is a 5× 6. The matrix A is

A =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 1 0 0 1
0 0 1 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

The number of possible routes is six and denote the unknown
vector of routes by x. We apply the well known Matlab con-
vex solver cvx[8] to obtain a solution of the L1 constrained
optimization problem and receive

x = (0, 1, 0, 0, 0, 0)

This solution is semantically meaningful as it indicates
that the following path have a bearing on the link anomalies

p2 : r2 → r3 → r4

Now if we solve for the l2 solution we receive

x = (0, 0.75, 0.25, 0.25,−0.25, 0.0)

This makes it very hard to interpret which routes are related
to the link anomalies.

IV. EXPERIMENT AND EVALUATION

In this section, we evaluate both efficiency and effective-
ness of our methods using real-world trajectories obtained
from GPS-equipped taxicabs in Beijing. These cabs can be
regarded as mobile sensors constantly probing the traffic
flow on road surfaces. Our approach is implemented on a

64-bit server running Windows Server 2008 (OS) with a
2.66GHZ CPU and a 16G memory.

A. Setting

Taxi Trajectories: We use GPS trajectories generated by
13,597 taxis over a period of 3 months (March, May, and
August in 2011). The total distance of the dataset is over
400 million kilometers and the total number of GPS point
is almost 790 million. The average sampling interval of the
dataset is 70.4 seconds. From the taxi trajectories we identify
effective trips (the taxicab was carrying a passenger)from the
an embedded weight sensor. As a result, 8,202,012 trips have
been detected, which is over 15 percent of traffic on road
surface (according to the report of Beijing Transportation
Bureau).

Road Network: The road network of Beijing consists of
121,771 road nodes and 162,246 edges. Using the major
roads (there is a road level associated with each edge)
from the network, Beijing has been partitioned into 580
regions. As illustrated in Figure 4 we define 15 minutes
as a time interval and study the performance of our method
changing over the size of the sliding window w. That is,
we carry out our method every 15 minutes using the taxi
trajectories received in the past w hours. The length of a
time interval is a trade-off between the computational load
and the timeliness of an application. On the one hand, setting
a long time interval reduces the times of anomaly detection
but will lead to a slow notification once an anomaly occurs.
On the other hand, a too short time interval (like 5 minutes)
will waste unnecessary computing resources as the traffic
flow will not change too much in a short period. We study
the performance of our method changing over window size
w.

Time
Sliding window

w hours
15 minutes

A time interval

Figure 4. The sliding window and matrix update time

In each implementation, we map the taxi trajectories
received in the latest time interval onto the road network,
updating the link-route matrix. For example, Figure 6 shows
the number of trajectories, paths, OD pairs, and links
(original as well as after being filtered) of a weekday
(5/18/2011) and weekend (4/17/2011), using 2 hours as the
windows size. In this case, we filter some links traversed
by less than 5 trajectories in every time interval of the
past two hours. These links may have been caused by
noisy trajectories or due to the imperfectness of the map-
matching function. Additionally, in practice, we only need
to capture the significant anomalies instead of all. In the later



experiments, we found that the performance of our method
is not compromised by using the small set of links. Further,
Figure 5 plots the trajectory data (the lighter the denser) and
link graph generated in 5/18/2011 on Beijing map.

Figure 5. Trajectory data and link distributions on maps
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B. Efficiency

Table II shows the efficiency of our framework, using the
average time cost of each component. For PCA we used the
standard inbuilt algorithm in Matlab and for L1 we used
the cvx package [8]. We also implemented a greedy version
of L1 similar in spirit to the Basis Pursuit algorithm [6].
The building of matrices like A and L was programmed in
C#. Note that once these matrices have been built for the
first time, we can update them very quickly in the streaming
scenario. Clearly, our method can be carried out very effi-
ciently for online applications. In short, in most instances
our framework can detect anomalies within 10 seconds. In
addition, extending the window size only leads to a slight
increase to the computing time. Given a sliding window
of 8 hours, we can still find anomalies within 15 seconds.
These results demonstrate the efficiency and scalability of
our method. The efficiency can be further enhanced using
some updating strategies proposed in streaming databases.

We studied three algorithms, consisting of cvx-L1, cvx-
L2, and the L1-greedy, that can be selected in the second step
of our framework. As shown in Figure 7 A), l2 algorithm
has the best efficiency according to the mean running time.

W Building matrices PCA L1-cvx Total
(h) First time(s) Update(s) (s) (s) (s)

1 16 1.8 0.03 0.75 2.58
2 20 2.4 0.04 1.37 3.80
3 42 2.8 0.04 2.05 4.89
4 55 3.2 0.07 2.81 6.07
5 63 4.1 0.07 3.57 7.44
6 65 4.1 0.08 4.43 8.61
7 74 4.5 0.08 5.39 10.01
8 82 4.9 0.08 6.44 11.48

Table II
THE BUILD, UPDATE AND RUNNING TIME OF MATRICES, PCA AND L1

OPTIMIZATION RESPECTIVELY

However, we found that l2 will result in many non-zero
entries in the vector x (refer to Table 2). That is finding
many routes contributing to an anomalous link, thereby
making it harder to interpret the results. As demonstrated
in Figure 7 B), the L1-greedy algorithm is faster than cvx-
L1 when the size of the sliding window is small. As the
window size increases, cvx-L1 demonstrates its advantages
over the L1-greedy algorithm. So, we can choose different
L1 implementation when using different window sizes.
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Figure 7. Efficiency of L1 implementation

Figure 8 shows the distribution of the distance of the
links to the mean value in the anomalous space (after being
transformed by PCA). No matter what size of a window and
what time of day with which we studied the distribution,
90% of the links have a distance smaller than one times
the standard deviation to the mean value and 98% had a
distance less than three standard deviations. Based on this
analysis, links whose distance to the mean was greater than
three standard deviations were labeled as anomalous.

C. Effectiveness

We evaluated the effectiveness our solution using both
real case studies and semi-synthetic experiments. Table III
presents the average number of detected anomalous links and
number of paths contributing to these links using different
window size. Generally, a larger sliding window leads to
more anomalous links and paths (the paths only traversed
by one taxi trajectory have been filtered). Unlike the L2
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Figure 8. Distribution of deviations in the anomalous subspace

algorithm that returns hundreds of paths, cvx-L1 offers a
reasonable number of paths when analyzing the root cause
of the detected anomalous links.

W Ave. num of Ave. number of non-zero entries of x

(h) anomalous links L1-cvx L1-greedy L2

1 4 10 4 40
2 5 23 14 88
3 9 30 31 192
4 10 31 48 250
5 13 58 88 410
6 14 63 107 524
7 16 97 114 650
8 17 91 100 693

Table III
NUMBER OF DETECTED ANOMALOUS LINKS AND PATHS. IT IS CLEAR

THAT THE L1 SOLUTION IS SUBSTANTIALLY MORE SPARSER THAN L2 .
FURTHEMORE, EVEN THOUGH MORE ROUTES THAN LINKS ARE

RETURNED, ROUTE ANOMALIES ARE EASIER TO EXPLAIN.

1) Real Case Studies: We further evaluated the detected
anomalies based on real-world events reported by Beijing
Transportation Bureau (as it is difficult to obtain all the
ground truth for the detected results). Figure 9 highlights
some events that occurred on a workday and non-workday
respectively, using a 2-hour window size and 15-minute time
interval. Figure 9(I) A) depicts some anomalies we detected
on (9am-11am) 4/2/2011 which should be a weekend but
was rescheduled to be a workday due to the upcoming Tomb-
Sweeping Festival (4/3-4/5). This is also the first weekend
after the opening of Sakura Festival held in Yuyuantan Park
which is located in region r3. Though most people went
to work, a large amount of traffic was still been generated
by people who traveled (especially from r1, r2, and r4) to
r3 to participate in the Sakura festival. As a result, three
anomalous links (L1, L2, and L3) were detected. Note that
our framework does not only identify anomalies but also
find out the root cause traffic leading to the anomalies. For
example, 21.4% of the traffic passing L2 was from r1 and
14.3% was from r2. At the same time, 61% of the traffic
causing L3 originated in r3. We further present the traffic
volume on L1 and L2 in Figure 9(I)B) and C) where we can
see the sudden changes (marked with red circle) of traffic on
these two links from 9am to 11am. Knowing that regions r1,

r2, and r4 are regions of historic interests (containing many
tourist attractions), we obtained the whole picture about
these events. That is, these anomalies could be generated
by tourists who want to attend the Sakura Festival.

As presented in Figure 9(II), a traffic control was enforced
in the red area for a Marathon race starting from Tiananmen
Square, leading to the blockage of the fastest routes between
region r1 and r3, r2 and r3, r1 and r5. An anomaly occurred
on link L1 due to the decrease of traffic flows as shown in
Figure 9(II)-B). In other words, people from r1, r2, and
r6 have to take a detour to reach region r3, r4, and r5.
For example, there were four taxis traveling from r1 to r5
in a 15-minute time interval before the traffic control (that
occurred at 9:30). However, the volume of traffic decreased
to zero after the traffic control. Similar changes happened
on other paths. This example shows that our framework can
detect anomalies caused by sudden increase or decrease of
traffic. This example also demonstrates the ability of our
framework in revealing the possible underlying cause of a
phenomena. In this particular instance, the problem does not
lie in the region even though the anomaly occurred there.
Without the identification of the routes contributing to the
anomaly it would have been very difficult to conclude that
the major problem was in the traffic control areas (marked
red).

2) Semi-Synthetic Experiments: To scale up the real case
study mentioned above, we have also carried out semi-
synthetic experiments based on real data to test the precision
and recall of our method. Specifically, we still formulate
a link graph (like Figure 5 right) and a corresponding
link-route matrix A based on the real taxi trajectory data
received in a time window. We then manually eliminate
some normal links from the graph, e.g., L5, as illustrated
in Figure 10 and distribute the traffic on L5 to another
path, for instance, the shortest path connecting r3 and r6
(assuming r3 → r4 → r6). Accordingly, the original paths
P1 and P2 will be modified to P1′ and P2′. To achieve
this, we first perform the first step of the proposed anomaly
detection method on the data. The detected anomalous links
will not be picked out for the semi-synthetic evaluation. In
the meantime, we properly select a normal link to be cut
(like L5), making sure the traffic volume on the link is big
enough to deviate the traffic on the alternative path (e.g.,
r3 → r4 → r6) from normal status. We first check whether
the link L3 and L4 as well as the removed link L5 can be
detected as an anomaly. Secondly, we test if our method can
find the root cause contributing to the anomaly of L3 and
L4, i.e., P1′ and P2′. We study the precision and recall
of each step as a function of the volume of traffic (i.e.,
number of taxis traveling) on the link we removed. Figure
11 A) and B) respectively shows the precision and recall of
our method in detecting anomalous links (i.e., the first step
using PCA). The horizontal axis denotes the traffic volume
on the link we cut. We randomly chose 200 time slots from
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Figure 9. (I) The traffic changes due to the Sakura festival is an example of anomaly caused by an increase in traffic. (II) The Beijing marathon results
in an anomaly due to a reduction in traffic.
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Figure 10. The semi-synthetic setup to evaluate the precision and recall
of our method.

the data (including workdays and holidays) and select three
links of each volume in each slot to test (as demonstrated in
Figure 10). That is, we performed 3*200=600 tests for each
volume of link. Later, we calculate the average precision and
recall for each volume. Generally, our method becomes more
capable of detecting anomalous links when the eliminated
link has a larger traffic volume. Meanwhile, a relatively
large window size (e.g., w=2hours) makes our method more
accurate than using a smaller one (e.g., w=1hour). However,
further increasing the window size (e.g., w=4hours) does not
help any more. This is in line with our intuition that observ-
ing during a longer time window is more likely to identify
anomalies accurately; however, a very long observing time
window is not necessary and would bring noise into the

inference.
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Figure 11. Effectiveness of step 1 (time bin=15min)

Figure 12 A) and B) show the effectiveness of inferring
the root cause of the detected anomalous links (i.e., the sec-
ond step). As a result, CVX-L1 method outperforms CVX-
L2 in both precision and recall, demonstrating its advantages
over the latter. Furthemore, CVX-L1 has a relatively stable
performance and is is not too sensitive to the changes in
traffic volume on a link.

V. RELATED WORK

We review four strands of research which are relevant to
this paper. These are (i) mathematical modeling of general
traffic networks , (ii) transportation systems analysis, (iii)
network anomaly detection techniques and (iv) analysis of
GPS data. The first three strands have a rich history and we
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Figure 12. Effectiveness of step 2 (time bin=15min, W=2hours)

will only be able to highlight the salient features relevant to
this paper.

A. Mathematical Modeling of Traffic Networks

We review the mathematical modeling aspects of traffic
networks from [9]. As noted before the basic primitive is
the link-route matrix A as shown in Figure 2(E), along with
the link flow and route flow vectors b and x respectively.
The flow on each link yi is given by

bi =
∑
j

Aijxj

Another important primitive (in mathematical modeling )
is the origin-destination pair and route matrix, H which is
also an {0, 1} incidence matrix. Here , H(s, r) captures the
information that route r links the origin-destination pair s.
In our work we do not explicitly model H as we are able to
infer this information from route flows. The congestion on
each link bi is captured by the delay function Di(bi). The
delay function can be calibrated for each link but is generally
an increasing function of bi. Now the time to travel along
each route j is given by the expression∑

i

Di(bi)Aij

Suppose there are two routes, r and r′ that can be used to
serve an origin destination pair s. The rational for a driver to
choose the route r such that compared to every other route
r′ ∑

i

Di(bi)Air ≤
∑
i

Di(bi)Air′

In a remarkable result due to Beckmann et. al. [1], it was
shown that the local strategy of Wardrop equilibrium is the
optimal solution of the global optimization problem

minimize
∑

i

∫ bi
0

Di(u)du

subject to Hx = s,Ax = b

and x, b ≥ 0

Much of the mathematical research in traffic networks
(both transportation and internetworking) is concerned with

the analysis of how local optimal choices can be captured
by a global optimization problem. For example, a similar
characterization has been obtained for the TCP protocol for
data traffic. Mathematical modeling of traffic is essentially
a “forward” exercise. The role of data is to calibrate the
model (e.g., the delay function). In data mining, we are more
interested in the “inverse” problem: how can we use data to
infer information about events which are causing traffic to
deviate from equilibrium.

B. Network Anomaly Detection

Our framework is closest to a body of work in the
networking community. The starting point is the paper by
Lakhina et. al. [11], which introduced the use PCA for
detecting network anomalies like denial of service attacks,
flash crowds, ping flood etc. PCA was used to exploit spatial
and temporal correlation between link traffic. Anomalies
were discovered by identifying time buckets which were
mostly resided in the subspace spanned by the low eigen-
vectors (i.e., eigenvectors corresponding to low eigenvalues)
of the covariance matrix of LLT where L is the link-time
matrix. These time buckets were labeled as anomalous. In
our case we look for link anomalies and thus we work in
the eigenspace of the matrix LTL. In a subsequent paper,
Zhang et. al. [17] combined network anomaly detection with
optimization (including L1 optimization) to identify source-
destination which caused the anomalous time bins. However
in both these and other papers in network anomaly detection,
the objective is to identify network anomalies and also their
potential origin-destination pairs. In our case, we begin with
almost no information about the events or even the type of
events that are causing traffic perturbations.

C. Transportation and Traffic Analysis

In the transportation systems literature, the problem of
relating link traffic to source-destination pairs is called the
observability problem. The standard text in this area is
Transportation Systems by Cascetta [5]. In this community
the source of data is still primarily sensors which are
embedded in roads and measure volume and occupancy rates
of each link. To the best of our knowledge the use of L1

optimization for inference of sparse route vectors has not
been used in the community.

There is some recent work [7], [13] that detects traffic
jams on road surfaces using GPS traces of vehicles. Our
framework is different from these techniques in two parts.
First, the traffic anomalies we detect are far beyond traffic
congestions, e.g., it could be a sudden decrease caused by
a traffic control. Sometime, an anomaly occurs even if a
road is not congested. Second, we study the traffic between
regions instead of on road surfaces. By this means, we can
not only reduce the complexity of modeling city-wide traffic
but also are to detect the root-cause of traffic anomalies.



Finally we would like to report some recent work in this
area which uses a similar data set. Zheng et. al. [18] have
used the data set to investigate the connectivity flaws in the
road network. Liu et. al. [12] have used frequent subgraph
mining to discover anomalous links for each time interval
and then connect the anomalies across time intervals to form
outlier trees. In this paper we also look for anomalies but the
key difference is the use of L1 machinery to elicit the cause
of anomalies discovered. Similary [14] et. al. have proposed
the use of likelihood ratio tests to determine regions where
the traffic volume has deviated substantially from the norm.
Again, this work is algorithmic and does to attempt to
explain the cause of anomalies. Finally we would like to
note that our work contributes towards the growing body of
literature on Urban Computing [19].

VI. SUMMARY AND CONCLUSION

In this paper we have proposed a framework to analyze a
large GPS data set obtained from over thirty thousand taxis
in Beijing over a three month period. Our framework has
two steps: mining and optimization. In the mining step we
have used Principal Component Analysis (PCA) to discover
link anomalies from GPS data. From the link anomalies
it is difficult to infer about what caused the anomalies to
occur. In order to gain further insights we used the link-route
incidence matrix to formulate an L1 optimization problem.
The sparse solution of the optimization problem gives a
candidate set of routes which can be used to explain why
anomalies occur. We give several real examples of such
anomalies.
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