
Detecting Loaded Trajectories for Hazardous
Chemicals Transportation

Shuncheng Liu1, Zhi Xu1, Huimin Ren2,3, Tianfu He2,3, Boyang Han2,3, Jie Bao2,3,*, Kai Zheng1,*, Yu Zheng2,3

1University of Electronic Science and Technology of China, Chengdu, China
2JD iCity, JD Technology, Beijing, China 3JD Intelligent Cities Research, Beijing, China

{liushuncheng, zhixu023}@std.uestc.edu.cn, {renhuimin5, hetianfu3, hanboyang, baojie}@jd.com,
zhengkai@uestc.edu.cn, msyuzheng@outlook.com

Abstract—Hazardous chemicals transportation (HCT) brings
significant financial, environmental, and health-related risks. It is
imperative that a robust regulatory system is in place to reduce
the risk of accidents occurring while such hazardous chemicals
are being transported. Governments around the world use GPS
sensors to monitor the raw trajectories of HCT trucks, but
they have difficulty detecting the loaded trajectories, which is
of utmost importance for the management of HCT processes.
The loaded trajectory refers to the subtrajectory generated by
tracking an HCT truck when it is loaded with hazardous chemical
in an HCT process. The stay points in the raw trajectory provide
some feasibility to detect the loaded trajectory as they reflect
the potential loading and unloading actions of the HCT truck.
However, directly using the stay points to detect the loaded
trajectory usually leads to unsatisfactory results due to two chal-
lenges: (1) complex staying scenarios, and (2) numerous loading
and unloading locations. To tackle the challenges, we propose a
LoadEd trAjectory Detection framework, called LEAD, to detect
the loaded trajectory from the raw HCT trajectory accurately
and efficiently. LEAD processes a raw trajectory into a set of
candidate trajectories, encodes each candidate trajectory into a
latent representation, and detects the loaded trajectory using
the latent representations of candidate trajectories. Extensive
experiments based on a real-world dataset from Nantong, China
confirm the effectiveness of our framework. The results show that
the detection accuracy of LEAD exceeds 83% which outperforms
competing baselines by over 42%.

Index Terms—Hazardous chemicals transportation, Loaded
trajectories detection

I. INTRODUCTION

Hazardous chemicals are chemical materials that may do
harm to human health and/or environment, or are capable of
damaging properties, such as flammable petroleum, corrosive
acids, toxic carbon monoxide, etc. Hazardous chemicals are
widely used in the workplace as raw materials, solvents,
catalysts, and for a number of other functions; however,
the improper operation of hazardous chemicals could cause
severe accidents. For example, on June 13th, 2020, a speeding
fuel truck crashed and exploded in Wenling, China, causing
20 deaths, 175 injuries, and $14.5 million loss in property
damage [1]. As a result, the production, transportation, and
storage processes of hazardous chemicals are strictly regulated
by governments around the world [2]. Among them, Haz-
ardous Chemicals Transportation (HCT) is the most uncon-

* Corresponding authors: Kai Zheng and Jie Bao

Loading
Location

Unloading
Location

Raw
Trajectory

Loaded
Trajectory

(Ⅲ)(Ⅱ)(Ⅰ)

Fig. 1. Example of HCT process

trollable process. According to the statistics of the Ministry
of Emergency Management of China, 77% of the accidents
related to hazardous chemicals have occurred during the HCT
processes [3]. Due to the chemical instability, hazardous
chemicals are allowed to be transported using only the HCT
trucks. An HCT process has three ordered phases (shown in
Figure 1): (I) the HCT truck goes to the loading location; (II)
the HCT truck transports hazardous chemical from the loading
location to the unloading location; and (III) the HCT truck
leaves the unloading location. Generally, most of the HCT
process can finish within a day [4], so each HCT process can
be represented by a trajectory of the HCT truck within one
day (namely raw trajectory), where each spatiotemporal point
indicates a physical presence of the HCT truck in a location
at a certain time. Due to the uncontrollability of the HCT
process, governments install GPS sensors on all HCT trucks
to monitor the raw trajectories.

In the raw trajectory, there is an especially important sub-
trajectory called loaded trajectory that indicates when an HCT
truck is loaded with hazardous chemical (corresponding to the
phase (II)). We find that the loaded trajectory is of utmost
importance for the HCT process due to the following reasons:
(1) The origin and destination of the loaded trajectory are
important, as they represent the loading location and unloading
location, respectively. The loading and unloading locations
correspond to specific types of POIs (points of interests) such
as chemical factories or fueling stations. Governments can
utilize these information to promptly identify illegal loading
and unloading locations [4]. (2) The complete loaded trajectory
is important, as it can determine whether the driver has
complied with the regulations during the HCT process. For
example, the HCT truck loaded with hazardous chemical is
prohibited from entering the main urban areas or moving on
roads from 2:00 am to 5:00 am [5]. Once an HCT truck

is found to violate the regulations, further actions can be
taken immediately. (3) The governments may improve the
urban planning schemes by analyzing the loaded trajectories.
For example, the driver often chooses detour routes to avoid
entering the main urban areas, but these detour behaviors will
affect the efficiency of the HCT process. Better understanding
the route preferences of HCT trucks can improve the road
network planning and urban planning of the city.

In practice, to obtain the loaded trajectory from the raw
trajectory, governments require the driver to fill in the waybill
which contains the time and location information of loading
and unloading. Using the waybill to select a subtrajectory of
the raw trajectory that matches the time and location informa-
tion, the loaded trajectory could be determined. Unfortunately,
the waybill is filled and submitted manually by the driver
in the online system after the whole HCT process finishes.
As a result, the collected waybills are usually of low quality
in terms of both time information and location information:
1) the driver frequently uses the default time preset by the
system for convenience (e.g., the loading time is 8:00 am
and unloading time is 5:00 pm). This leads to inaccuracy
in time information; 2) the loading and unloading addresses
manually filled in by the driver are either coarse-grained or
even incorrect. For example, the correct address is ‘Zhongtian’
chemical factory in Nantong, China, but the driver only fills in
Nantong, or mistypes ‘Zhongzhi’ chemical factory. This leads
to deviations in location information. Therefore, simply relying
on manually filled waybills cannot get the accurate loaded
trajectories, making it difficult for governments to assure the
safety and legality of the HCT process.

In this work, our objective is to accurately detect the loaded
trajectory from the raw trajectory of the HCT truck. With the
loaded trajectories accurately detected, the governments can
better prevent chemical accidents, regulate the drivers, and
improve urban planning. In addition, high-quality waybill can
be automatically generated from the loaded trajectory, which
not only obtains reliable loading and unloading information,
but also greatly eases the burden on drivers. Therefore, loaded
trajectory detection is crucial for managing the HCT process.

In fact, the loaded trajectory has two important character-
istics that can guide the detection. Firstly, when the HCT
truck is loading/unloading hazardous chemical, it must stay
somewhere for a sufficient period of time [4]. In other words,
there are staying behaviors at the origin and destination of
the loaded trajectory (defined as loading and unloading stay
points). Secondly, there are specific types of POIs near the
loading and unloading stay points, such as chemical factories,
hospitals, etc. Therefore, analyzing the stay points in the raw
trajectory is beneficial for detecting the loaded trajectory.

Intuitively, we can detect the loaded trajectory by estimating
whether each stay point in the raw trajectory is a loading
stay point or an unloading stay point. For instance, a model
can be built to classify each stay point by recognizing the
loading and unloading actions; or we can collect a white
list with real loading and unloading locations utilizing the
historical loaded trajectories, which can be used to search for

the loading and unloading stay points. However, they cannot
effectively detect the loaded trajectory due to the following
reasons: (1) The scenarios where an HCT truck stays are
complex. An HCT truck stays at a fuel station either because
it is loading/unloading fuel, or simply because the driver
is having a break while refueling the truck. These different
scenarios share the same staying behavior, which are hard to
be distinguished solely based on the stay points. (2) There are
many locations for loading and unloading stay points, as they
may appear in different chemical factories, hospitals, and even
construction sites. It is difficult to collect all real loading and
unloading locations for the white list that covers all potential
loading and unloading stay points.

To tackle the challenges, we propose to detect the loaded
trajectory by generating and identifying the candidate trajec-
tories (i.e., a subtrajectory that starts with one stay point and
ends with another stay point), based on the following insight.
A stay point indicates a staying behavior, and a trajectory
that connects two consecutive stay points represents a moving
behavior. It is necessary to consider both of them to detect
the loaded trajectory. The basic idea is to firstly extract all the
stay points, and treat each ordered pair of stay points and all
locations in-between as a candidate trajectory. Then we detect
the loaded trajectory by identifying all candidate trajectories of
the raw trajectory. In this way, the above two challenges could
be remedied because: (1) Candidate trajectories contain not
only the staying behaviors, but also the moving behaviors. The
moving behaviors contain enriched information (e.g., speeds
and routes), which can be leveraged to better classify complex
staying scenarios. For example, after loading the fuel, the
speed of HCT truck is lower than that of having a break in
the fueling station. (2) We can build a deep learning-based
framework to capture the general knowledge from historical
loaded trajectories, and detect the loaded trajectory from
an unseen raw trajectory instead of relying on pre-collected
loading and unloading locations in the white list.

In this work, we propose a LoadEd trAjectory Detection
framework, called LEAD, to accurately detect the loaded
trajectory from the raw HCT trajectory. LEAD consists of three
components: 1) raw trajectory processing, which transforms
a raw trajectory into a series of the candidate trajectories; 2)
candidate trajectory encoding, which encodes each candidate
trajectory into a latent representation; and 3) loaded trajectory
detection, which detects the loaded trajectory using the latent
representations of candidate trajectories. Our main contribu-
tions can be summarized as follows:
•To the best of our knowledge, it is the first work to propose
and address the loaded trajectory detection problem, which
can help better manage and monitor the HCT process.
•We propose LEAD, which can model both staying and
moving behaviors of the HCT truck, and accurately detect the
loaded trajectory from candidate trajectories.
•We conduct extensive experiments using a real-world dataset
from Nantong, China, to evaluate the effectiveness of LEAD.
The results show that the detection accuracy of LEAD exceeds
83% which outperforms competing baselines by at least 42%.

Noise Filtering

Stay Points
Extraction

1
Stay
Point

2
Stay
Point

3
Stay
Point

Stay
Point

Stay
Point

Candidate
Trajectory
Generation

4

5

1 2

1 3

1 4

1 5

2 3

2 4

2 5

Feature Extraction
Dataset

Hierarchical Autoencoder

Compressor

Decompressor

Feature Sequences

Compressed Vectors

1
-2

1
-3

1
-4

1
-5

2
-3

2
-4

2
-5

1
-2

1
-3

1
-4

1
-5

2
-3

2
-4

2
-5

Group Generation

1
-2

2
-3

Forward Group

1
-2

2
-3

Backward Group

Forward
Detector

Backward
Detector

Stacked
BiLSTM

Stacked
BiLSTM

Label
Processing

Real Label

Probabilities Probabilities

Noise Filtering

Stay Points
Extraction

Stay Points

Candidate
Trajectory
Generation

Candidate
Trajectories

Hierarchical Autoencoder

Compressor

Feature Extraction

Feature Sequences

Compressed Vectors

Group Generation

Forward
Detector

Backward
Detector

Probabilities

Stacked
BiLSTM

Stacked
BiLSTM

Raw Trajectory Processing Candidate Trajectory Encoding Loaded Trajectory Detection

Input Output

O
ff

li
n

e
O

n
li

n
e

Trained Trained

Loaded
Trajectory

2 42 4

Backward GroupForward Group

1
-3

Fig. 2. LEAD Framework Overview

II. OVERVIEW

A. Preliminary Concepts

Definition 1 (Raw Trajectory): A raw trajectory is a se-
quence of GPS points, denoted as tr r = ⟨p1 , p2 , . . . , pn⟩,
where each GPS point p consists of a location in latitude lat
and longitude lng , and a timestamp t, i.e., p = (lat , lng , t).
GPS points in a raw trajectory are organized chronologically,
i.e., pi.t < pi+1.t(∀i ∈ [1, n)). In this work, a raw trajectory
is generated by an HCT truck within one day, which indicates
three ordered phases: going to a loading location → transport-
ing hazardous chemical → leaving an unloading location.

Definition 2 (Stay Point): A stay point sp is a subtrajectory
of trr which semantically means that an HCT truck stays in
a geographic region for a while. Formally, given a distance
threshold Dmax and a time threshold Tmin, ⟨pi, pi+1, . . . , pj⟩
is a stay point sp if distance(pi, pk) ≤ Dmax(∀k ∈ [i+ 1, j]),
distance(pi, pj+1) ≥ Dmax(j < n), and |pj .t−pi.t| ≥ Tmin.

Definition 3 (Loaded Trajectory): A loaded trajectory trl

is a subtrajectory of trr indicating that an HCT truck loaded
with hazardous chemical during the transporting phase. We
note that an HCT truck still loaded with hazardous chem-
ical and stays in a region for a while when loading and
unloading hazardous chemical. Therefore, a loaded trajectory
trl starts with the loading stay point spl and ends with
the unloading stay point spu. Formally, given a loaded tra-
jectory ⟨pi, pi+1, . . . , pj⟩, the loading stay point spl refers
to ⟨pi, pi+1, . . . , pa⟩, and the unloading stay point spu is
⟨pb, . . . , pj−1, pj⟩ (i < a < b < j). Thus, a loaded trajectory
⟨pi, pi+1, . . . , pj⟩ can be simplified as the ordered pair of
loading and unloading stay points ⟨spl 99K spu⟩.

Definition 4 (Candidate Trajectory): A candidate trajectory
trc is a subtrajectory of trr that starts with one stay point
and ends with another stay point. Given a candidate trajectory
⟨pi, pi+1, . . . , pj⟩ that starts with spi′ and ends with spj′ , it
can be simplified as an ordered pair of stay points trc =
⟨spi′ 99K spj′⟩. We denote Trc as the set of all candidate

trajectories. Given a raw trajectory trr, the loaded trajectory
is one of the candidate trajectories, i.e., trl ∈ Trc .
Problem Statement. Given an unseen raw trajectory trr, our
objective is to detect the loaded trajectory trl from trr.

B. Framework Overview

Figure 2 shows the architecture of our framework LEAD,
which consists of three components: raw trajectory processing,
candidate trajectory encoding, and loaded trajectory detec-
tion. LEAD is a two-stage framework, including the offline
stage and the online stage. In the offline stage, LEAD learns
the knowledge utilizing the historical raw trajectories with
corresponding loaded trajectories. In the online phase, LEAD
detects the loaded trajectory from the unseen raw trajectory.
Next, we will briefly introduce each component.
Raw Trajectory Processing. This component takes the raw
trajectory and performs three main tasks. The first task is noise
filtering, which removes the outlier GPS points. The second
task is the stay points extraction, which captures all stay points
in the raw trajectory. The third task is the candidate trajectory
generation, which produces a series of candidate trajectories
by enumerating all the stay point pairs (detailed in Section III).
Candidate Trajectory Encoding. This component encodes
candidate trajectories into compressed vectors, which is de-
signed to obtain the latent representations of candidate trajec-
tories. The component firstly extracts features from candidate
trajectories and converts them to feature sequences. Then a
hierarchical autoencoder learns to refine and restore the feature
sequences equipped with a compressor and a decompressor.
After training the hierarchical autoencoder, the compressor
can be used to acquire the compressed vectors of candidate
trajectories (detailed in Section IV).
Loaded Trajectory Detection. This component utilizes the
compressed vectors to detect the loaded trajectory, which
is designed to capture the potential relationships between
different candidate trajectories, thus making detection more
accurate. The component firstly organizes the compressed
vectors in two ways to generate a forward group and a

backward group respectively. Both groups consist of multiple
subgroups, and each subgroup contains the compressed vectors
of candidate trajectories with potential relationships. Secondly,
the two groups are fed into forward and backward detectors,
respectively. The two detectors output two discrete probability
distributions, and each distribution represents probabilities of
the candidate trajectories. Thirdly, the real labels derived from
archived loaded trajectories are processed, and the processed
labels are used to train the two detectors. After training, the
outputs of two detectors are combined into one probability
distribution, and the candidate trajectory which has the highest
probability is the detection result (detailed in Section V).

III. RAW TRAJECTORY PROCESSING

This component takes a raw trajectory as input, cleans the
raw trajectory and extracts the stay points from it. Finally,
the candidate trajectories are generated by enumerating all the
ordered pairs of stay points. Figure 3 shows an example of
raw trajectory processing.
Noise Filtering. The raw trajectory generated by an HCT
truck usually contains a few noise GPS points due to the
shifts introduced by the GPS sensor. As shown in Figure 3(a),
the error of p19 and p22 might be several hundred meters
away from their true locations. Such noise GPS points would
affect the performance of the subsequent tasks, e.g., stay point
extraction. Thus, we utilize a heuristic approach [6] to filter
noise GPS points. The approach sequentially calculates the
traveling speed for each GPS point based on its precursor and
itself. If the speed is larger than a speed threshold Vmax,
the current examined GPS point is removed from the raw
trajectory. In Figure 3(a), p19 and p22 will be removed.
Stay Point Extraction. Acquiring all stay points in the raw
trajectory can help construct candidate trajectories. We employ
a rule-based algorithm [7] to extract the stay points in the
cleaned raw trajectory. The algorithm firstly checks if the
distance between an anchor point and its successors in a raw
trajectory is larger than a distance threshold Dmax. As shown
in Figure 3(b), p11 is the current anchor point, and p12 to
p14 are its successors within Dmax. It then calculates the time
interval between the anchor point and the last successor within
Dmax (p11 and p14). If the duration is larger than a temporal
threshold Tmin, a stay point is extracted (from p11 to p14), and
the anchor point moves to the next GPS point after the current
stay point (p15). Otherwise, the anchor point moves forward
by one (p12). This process is repeated until the anchor point
moves to the end of the raw trajectory. The algorithm can
generate stay points that are temporally consecutive, which is
convenient for stay points numbering.
Candidate Trajectory Generation. Based on the stay points
of the raw trajectory, we can further generate a series of can-
didate trajectories. The candidate trajectories cover the search
space of loaded trajectory detection, since each candidate
trajectory starts with a stay point and ends with another stay
point. To generate the candidate trajectories, we enumerate all
the ordered pairs of stay points. As shown in Figure 3(c), 10
candidate trajectories are generated by traversing 5 stay points.

Current
Anchor

(a) Noise
Filtering

(b) Stay Point
Extraction

(c) Candidate Trajectory
Generation

Fig. 3. Example of Raw Trajectory Processing

Generally, given n stay points, we can generate n(n − 1)/2
candidate trajectories. According to the statistics, the number
of stay points extracted from a raw trajectory within one day
ranges from 3 ∼ 14, so the number of generated candidate
trajectories is moderate (3 ∼ 91).

IV. CANDIDATE TRAJECTORY ENCODING

This component firstly converts candidate trajectories into
high-dimensional feature sequences. Then a hierarchical au-
toencoder is proposed to compress them and acquire latent
representations for each candidate trajectory.

A. Feature Extraction

A candidate trajectory is composed of GPS points, we
need to extract the features of each GPS point. In addition
to the acquired spatiotemporal features i.e., (lat, lon, t), the
POI (point of interest) features reflect the spatial semantics
that are beneficial for the detection. For example, if there are
many factories near a GPS point, it means that the HCT truck
has entered the industrial zone and might be loading/unloading
hazardous chemical. Therefore, we extract both spatiotemporal
and POI features for each GPS point in a candidate trajectory.

Specifically, given a candidate trajectory ⟨pi, pi+1, . . . , pj⟩,
we vectorize each GPS point p as a feature vector f =
[p.lat, p.lng, p.t, poi], where (p.lat, p.lng, p.t) is the spa-
tiotemporal features and poi is the POI feature. For the spa-
tiotemporal features, p.lat and p.lng form a spatial location,
and p.t is a timestamp. For the POI feature, we count the
nearby POI categories of a GPS point within a radius of
100m, forming a vector poi where each value refers to the
number of a POI category existence. In this work, we select 29
typical POI categories, so f is a 32-dimensional feature vector.
Moreover, to avoid the outlier issue, we normalize the above
features using the Z-score strategy [8]. Finally, a candidate
trajectory ⟨pi, pi+1, . . . , pj⟩ is converted to a sequence of
feature vectors ⟨fi, fi+1, . . . , fj⟩, namely, a feature sequence.

B. Hierarchical Autoencoder

After extracting the features of all candidate trajectories, we
get a series of feature sequences. The most straightforward
approach is to use a recurrent neural network to learn the
latent representation of each feature sequence and then make
the detection. However, the high-dimensional feature sequence
will suffer from the curse of dimensionality especially for
the long-range trajectory. Moreover, the vectors in the feature
sequence are sparse due to the usage of the POI feature.
The sparse inputs will affect the convergence performance of
the model, and even reduce the accuracy of the detection. In

TABLE I
SUMMARY OF ABBREVIATIONS IN HIERARCHICAL AUTOENCODER
Abbreviation Explanation

f-seq feature sequence
sp(mp)-f-seq feature sequence of a stay point (move point)

SPs(MPs)-f-seq feature sequence of stay points (move points)
sp(mp)-c-vec compressed vector of a stay point (move point)

SPs(MPs)-c-vec-seq sequence of compressed vectors of stay points (move points)
SPs(MPs)-c-vec compressed vector of stay points(move points)

c-vec compressed vector

𝑝ଶ

Stay
Point

Move
Point

Sequence of
Stay Points

Sequence of
Move Points

f-seq

sp-f-seq
SPs-f-seq

MPs-f-seq
mp-f-seq

(a) Candidate Trajectory (b) Feature Sequence

Fig. 4. Example of Candidate Trajectory and Feature Sequence

summary, a representation model that can compress the feature
sequence into a low-dimensional dense vector is desired.
Table I lists the abbreviations used throughout this subsection.

We introduce an autoencoder equipped with a compressor
and a decompressor, to solve the aforementioned issues and
learn the representation of each f-seq. The compressor can
reduce the dimension of the f-seq. In contrast, the decompres-
sor recovers the compressed vector to the f-seq. Furthermore,
we analyze two potential characteristics of the candidate
trajectories that inspire our autoencoder construction:
(1) Spatiotemporal difference between stay points and move
points. A stay points indicates a staying behavior of an HCT
truck, while the GPS points (called move point) that connect
two consecutive stay points indicate a moving behavior of an
HCT truck, as shown in Figure 4(a). Formally, a move point
is defined as follows:

Definition 5 (Move Point): A move point mpi′ is a subtra-
jectory of trr that connects two consecutive stay points1, i.e.,
spi′ and spi′+1.
Accordingly, a candidate trajectory can be further regarded as
a sequence that stay points and move points appear by turns,
e.g., trc = ⟨spi′ ,mpi′ , spi′+1, . . . ,mpj′−1, spj′⟩. Apparently,
the spatiotemporal patterns of stay points and move points are
different due to the different driving behaviors. Therefore, as
shown in Figure 4(b), a feature sequence of a stay point (sp-
f-seq) and a feature sequence of a move point (mp-f-seq) need
to be compressed and decompressed separately, avoiding the
wrong parameters sharing in the autoencoder.
(2) Spatiotemporal difference between sequence hierarchies.
As shown in Figure 4(a), all stay points in a candidate
trajectory can be regarded as a sequence of stay points, and
each stay point is a sequence of GPS points. Apparently,
different sequence hierarchies have different spatiotemporal
patterns, e.g., the spatial/temporal spans between stay points
are larger than the spatial/temporal spans between GPS points.
Therefore, as in Figure 4(b), a f-seq can be split into a feature
sequence of stay points (SPs-f-seq) and a feature sequence
of move points (MPs-f-seq), where SPs-f-seq is a sequence
of sp-f-seq(s) and MPs-f-seq is a sequence of mp-f-seq(s).

1We note two special move points: mp0 is a move point before the first
stay point sp1, and mpn is a move point after the last stay point spn.

SPs-f-seq

SPs-c-vec-seq

sp-f-seq sp-f-seq mp-f-seq mp-f-seq

sp-c-vec sp-c-vec mp-c-vec mp-c-vec

MPs-f-seq

MPs-c-vec-seq

MPs-c-vecSPs-c-vec

c-vec
Compression Operator
LSTM Self-attention

f-seq

SPs-f-seq

SPs-c-vec-seq

sp-f-seq sp-f-seq mp-f-seq mp-f-seq

sp-c-vec sp-c-vec mp-c-vec mp-c-vec

MPs-f-seq

MPs-c-vec-seq

MPs-c-vecSPs-c-vec

f-seq

Decompression Operator
LSTM

Compression Operator Compression Operator

Compression OperatorCompression Operator

Decompression Operator Decompression Operator

Decompression OperatorDecompression Operator

Compressor Decompressor

(Ⅰ)

(Ⅱ)

(Ⅰ)

(Ⅱ)

Fig. 5. Hierarchical Autoencoder

Each sp-f-seq or mp-f-seq consists of feature vectors of GPS
points. The compressor should capture the hierarchical features
from the f-seq, while the decompressor needs to recognize the
hierarchical features from the compressed result.

To this end, we propose a hierarchical autoencoder, where
the compressor and decompressor can separately process the
stay points and move points in a hierarchical manner. Next, we
introduce the compressor and decompressor, and then present
the workflow in detail.
Compressor. As shown on the left side in Figure 5, our
compressor has two phases. In the first phase, a compression
operator compress each sp-f-seq (in SPs-f-seq) into a vector
called sp-c-vec, and another operator compress each mp-f-seq
(in MPs-f-seq) into a vector called a mp-c-vec. In the second
phase, all sp-c-vec(s) and mp-c-vec(s) are compressed into a
final compressed vector (c-vec) using two compression opera-
tors. A compression operator consists of an LSTM and a self-
attention mechanism. The LSTM learns the latent representa-
tion of a sequence [9] and the self-attention mechanism [10],
[11] aggregates a sequence into a vector.

We take a f-seq as an example to introduce the
process of the compressor. The compressor firstly
takes the f-seq ⟨fi, fi+1, . . . , fj⟩ of a candidate
trajectory trc = ⟨pi, pi+1, . . . , pj⟩ (i.e., ⟨spi′ 99K spj′⟩,
⟨spi′ ,mpi′ , spi′+1, . . . ,mpj′−1, spj′⟩) as an input, and
divides it into SP-f-seq and MP-f-seq as follows:

fSP = ⟨fspi′
,fspi′+1

, . . . ,fspj′
⟩,

fMP = ⟨fmpi′
,fmpi′+1

, . . . ,fmpj′−1
⟩,

(1)

where fspi′
and fmpi′

denote a sp-f-seq and mp-f-seq, respec-
tively.

(I) In the first phase, two compression operators work for
compressing each sp-f-seq and mp-f-seq, respectively. A sp-f-
seq, fspi′

= ⟨fi, fi+1, . . . , fi+a⟩ (with a+1 steps), is fed into
an LSTM which outputs the hidden state vector at each step
as follows:

hτ = LSTM(fτ , hτ−1;Wl1) (2)

where τ ∈ [i, i+a], hτ−1 is the hidden state vector at the last
step, and Wl1 denotes the learnable parameters. Then a self-
attention mechanism is used to aggregate hidden states along
with the steps while different steps have different importance
scores. Unlike the simple usage of the LSTM’s hidden state
vectors, we introduce a self-attention mechanism [10], [11]
to enhance the memory ability of the operator, which can
better deal with the long-range sequence. The last hidden state

vector hi+a of LSTM that contains the information of all the
historical steps is used to calculate the importance score of
each step. For example, to get the importance score of a step
in the sequence, we calculate how much hi+a pays attention
to it. This attention indicates the weight assigned to this step
during the aggregation. Following the standard procedure [10],
we can obtain a query vector q of the last hidden state, and a
key matrix K of all the hidden states, as follows:

q = hi+a ×Wq + bq,K = H ×WK + bK (3)

where H refers to all hidden state vectors of the LSTM, i.e.,
H = [hi, hi+1, . . . , hi+a], and Wq and WK are the weights of
the fully connected layers for hi+a and H , respectively, bq and
bK denote biases of Wq and WK , respectively. It should be
noted that we want to aggregate all the hidden state vectors, so
the value matrix includes the hidden states output by LSTM.
With q and K, we can calculate the importance scores s of
all steps using Softmax (q×K√

dk
), where dk is dimension of the

key vector in K. Thereafter, we can aggregate the hidden state
vectors H into a vector h =

∑i+a
τ=i si · hi, where si (si ∈ s)

represents the importance score at each step. Finally, a sp-c-
vec (i.e., vcspi′

) can be obtained by using non-linear activation
as follows:

vcspi′ = Tanh((h×Wc1 + bc1)×Wc2 + bc2) (4)

where Wc1 and Wc2 are the weights of two fully connected
layers, and bc1 and bc2 denote biases of Wc1 and Wc2,
respectively.

Following the aforementioned process, every sp-f-seq in SP-
f-seq is compressed into a sp-c-vec, thus forming a sequence
as vc

SP = ⟨vcspi′ , v
c
spi′+1

, . . . , vcspj′ ⟩ (called SP-c-vec-seq), and
every mp-f-seq in MP-f-seq is compressed into a mp-c-vec,
forming a sequence as vc

MP = ⟨vcmpi′
, vcmpi′+1

, . . . , vcmpj′
⟩ (i.e.,

MP-c-vec-seq).
(II) Then in the second phase, the other two compression

operators work for compressing SP-c-vec-seq and MP-c-vec-
seq, respectively. The architecture of compression operators
in the second phase is the same as those in the first phase.
Therefore, vc

SP is compressed into a vector vcSP (SP-c-vec),
and vc

MP is compressed into a vector vcMP (MP-c-vec).
Finally, the c-vec of candidate trajectory ⟨spi′ 99K spj′⟩
(denoted as vc(i′,j′)) can be obtained by concatenating SP-c-vec
and MP-c-vec, i.e., vc(i′,j′) = [vcSP , v

c
MP].

Decompressor. As shown on the right side in Figure 5, our
decompressor is roughly symmetrical to the compressor that
has two phases. In the first phase, the SP-c-vec and MP-c-vec
in the c-vec are decompressed to SP-c-vec-seq and MP-c-vec-
seq, respectively. In the second phase, each sp-c-vec in SP-
c-vec-seq is decompressed to a sp-f-seq, and each mp-c-vec
in MP-c-vec-seq is decompressed to a mp-f-seq. Thereafter,
all sp-f-seq(s) form a SP-f-seq, and all mp-f-seq(s) form a
MP-f-seq. The decompressed result f-seq will be obtained
by assembling the SP-f-seq and MP-f-seq. Similar to the
compressor, there are 4 decompression operators inside the
decompressor. A decompression operator is an LSTM that can

utilize an input vector to recover a sequence with variable
steps.

To be specific, the decompressor firstly takes vc(i′,j′) as
input, and divides it into vcSP and vcMP .

(I) In the first phase, two decompression operators work for
decompressing vcSP and vcMP , respectively. For the SP-c-vec
decompression, vcSP is fed into an LSTM, which outputs the
hidden state vector at each step as follows:

h′
τ = LSTM(vcSP , h

′
τ−1;Wl2) (5)

where τ ∈ [i, i+a], hde
τ−1 is the hidden state vector at last step,

and Wl2 denotes the parameters of LSTM. This calculation
repeats a+1 times to get a matrix H ′ = [h′

i, h
′
i+1, . . . , h

′
i+a].

Finally, the SP-c-vec-seq is generated as follows:

vdec
SP = Tanh((H ′ ×Wd1 + bd1)×Wd2 + bd2) (6)

where vdec
SP denotes the decompressed result of SP-c-vec-seq,

Wd1 and Wd2 are the weights of two fully connected layers,
and bd1 and bd2 denote biases of Wd1 and Wd2, respectively.
This non-linear activation can map the H ′ to between -1 to
1, matching the range of f-seq. Similarly, for decompressing
the MP-c-vec, vcMP is decompressed to vdec

MP that is the the
decompressed result of MP-c-vec-seq.

(II) Then in the second phase, the other two operators work
for decompressing each sp-c-vec in SP-c-vec-seq, and each
mp-c-vec in MP-c-vec-seq, respectively. The decompression
operators in the second phase are the same as those in the
first phase. As a result, each vdecsp ∈ vdec

SP is decompressed to
a sp-f-seq (i.e., fdec

sp), and each vdecmp ∈ vdec
MP is decompressed

to a mp-f-seq (i.e., fdec
mp). Arranging all sp-f-seq(s) and mp-

f-seq(s) can form the decompressed results of SP-f-seq and
MP-f-seq, respectively, as follows:

f dec
SP = ⟨fdec

spi′
,fdec

spi′+1
, . . . ,fdec

spj′
⟩,

f dec
MP = ⟨fdec

mpi′
,fdec

mpi′+1
, . . . ,fdec

mpj′−1
⟩,

(7)

Finally, the decompressed f-seq i.e., ⟨fdec
i , fdec

i+1, . . . , f
dec
j ⟩,

can be obtained by assembling the SP-f-seq and MP-f-seq.
Workflow. In the offline stage, given an archive of historical
raw trajectories, the hierarchical autoencoder utilizes the f-
seq(s) of all the candidate trajectories generated from the raw
trajectories to train the compressor and decompressor in a
self-supervised manner. In particular, all f-seq(s) derived from
historical raw trajectories are shuffled for training the hierar-
chical autoencoder. For each f-seq e.g., ⟨fi, fi+1, . . . , fj⟩, the
hierarchical autoencoder needs to minimize the MSE loss as
follows:

LMSE =
1

j − i+ 1

j∑
τ=i

(fτ − fdec
τ)2 (8)

where fdec
τ denotes τ -th feature vector in the decompressed

f-seq.
After training the hierarchical autoencoder, the decompres-

sor is put aside, and the trained compressor is used to compress
any f-seq of candidate trajectory into a c-vec. Furthermore, we
note that the trained compressor can be used in both offline
and online stages. For the offline stage, the c-vec(s) of a

historical raw trajectory are fed into the detection component,
thus training the detector. For the online stage, the c-vec(s) of
an unseen raw trajectory are the inputs of the trained detection
component, thus detecting the loaded trajectory.

V. LOADED TRAJECTORY DETECTION

This component firstly organizes the compressed vectors in
forward and backward ways and generates two groups. Then
the two groups are input to two detectors, respectively. The
two detectors output two discrete probability distributions in
terms of forward and backward perspectives. Each distribution
represents the probability that a candidate trajectory is the
loaded trajectory. Furthermore, to effectively train the detec-
tors, a label processing method is used to generate the training
labels from real labels.

A. Group Generation

After encoding the candidate trajectories of a raw trajectory,
we obtain a set of compressed vectors. Specifically, each
trr ∈ Trc (trc = ⟨spi′ 99K spj′⟩), is represented as a com-
pressed vector vc(i′,j′), via the candidate trajectory encoding.
Intuitively, we can detect the loaded trajectory using a binary
classifier, as a detector. The classifier utilizes all compressed
vectors with corresponding labels (i.e., is loaded trajectory or
not) to learn how to distinguish a loaded trajectory. Regardless
of the offline or online stage, the classifier treats each candi-
date trajectory as an independent sample and calculates the
probability using the compressed vector. However, this naive
approach ignores the relationships between candidate trajec-
tories, which will suffer from sub-optimal solutions. Next,
we analyse three relationships between candidate trajectories,
based on which we present our group generation method.

Include Include

Exclude Exclude

(a) Inclusion and Exclusion Relationships (b) Analogy Relationships

Fig. 6. Example of Relationships Between Candidate Trajectories

The candidate trajectories of a raw trajectory have visible in-
clusion and exclusion relationships. As show in Figure 6(a), a
candidate trajectory ⟨sp1 99K sp3⟩ (⟨sp1,mp1, sp2,mp2, sp3⟩)
includes another candidate trajectory ⟨sp1 99K sp2⟩. Mean-
while, ⟨sp1 99K sp3⟩ is a result of ⟨sp1 99K sp4⟩ excluding
mp3 and sp4. Therefore, when judging ⟨sp1 99K sp3⟩, both
⟨sp1 99K sp2⟩ and ⟨sp1 99K sp4⟩ as a context information
can guide the judgment. If the probabilities of ⟨sp1 99K sp2⟩
and ⟨sp1 99K sp4⟩ are very low, ⟨sp1 99K sp3⟩ is almost
impossible to be the loaded trajectory. In contrast, individually
judging ⟨sp1 99K sp3⟩ could easily make a wrong decision
since it cannot be corrected by any context information.

In addition, it is necessary to consider the analogy relation-
ships between candidate trajectories. Specifically, analogous
candidate trajectories that share the same starting or ending
stay points indicate the consistency of origin and destination.
As shown in Figure 6(b), the candidate trajectories on the

TABLE II
EXAMPLE OF GROUP GENERATION

Compressed Vectors of Candidate Trajectories
vc
(1,2)

, vc
(1,3)

, vc
(1,4)

, vc
(1,5)

, vc
(2,3)

, vc
(2,4)

, vc
(2,5)

, vc
(3,4)

, vc
(3,5)

, vc
(4,5)

Forward Group
g1 g2 g3 g4

⟨vc
(1,2)

, vc
(1,3)

, vc
(1,4)

, vc
(1,5)

⟩ ⟨vc
(2,3)

, vc
(2,4)

, vc
(2,5)

⟩ ⟨vc
(3,4)

, vc
(3,5)

⟩ ⟨vc
(4,5)

⟩
Backward Group

g2 g3 g4 g5
⟨vc

(1,2)
⟩ ⟨vc

(2,3)
, vc

(1,3)
⟩ ⟨vc

(3,4)
, vc

(2,4)
, vc

(1,4)
⟩ ⟨vc

(4,5)
, vc

(3,5)
, vc

(2,5)
, vc

(1,5)
⟩

top are started with sp1, and the candidate trajectories on the
bottom are ended with sp5. If sp1 is not the loading stay
point, each of the probability in the left group should be low.
Similarly, if sp5 is not the unloading stay point, each of the
probability in the right group should be low. Therefore, the
analogy relationships can help determine the loaded trajectory
that starts with the loading stay point and ends with the
unloading stay point.

Based on the analysis, it is necessary for a detector to
capture the inclusion, exclusion and analogy relationships be-
tween candidate trajectories. However, the compressed vectors
of candidate trajectories are disordered, which are impossible
for a detector to directly capture the relationships. To raise
awareness about the relationships between candidate trajecto-
ries, we propose a group generation method, which can wisely
organize the compressed vectors using two grouping strategies,
i.e., forward grouping and backward grouping.

Forward grouping is a strategy that groups the compressed
vectors by the starting indexes of compressed vectors, and
generates a forward group. The forward group consists of
subgroups, and each subgroup contains compressed vectors
with the same starting indexes. Specifically, compressed vec-
tors with the same starting index i′ form a subgroup gi′ where
compressed vectors are sorted in ascending order by ending
indexes, i.e., gi′ = ⟨vc(i′,i′+1), v

c
(i′,i′+2), . . . , v

c
(i′,n)⟩, where n

is the number of stay points and 1 ≤ i′ < n.

Backward grouping is a strategy that groups the compressed
vectors by the ending indexes, and generates a backward
group. The backward group consists of subgroups, and each
subgroup contains compressed vectors with the same ending
indexes. Specifically, compressed vectors with the same ending
index j′ is a subgroup gj′ where compressed vectors are
sorted in descending order by starting indexes, i.e., gi′ =
⟨vc(j′−1,j′), v

c
(j′−2,j′), . . . , v

c
(1,j′)⟩ (1 < j′ ≤ n).

For example, Table II gives 10 compressed vectors of candi-
date trajectories, and all compressed vectors are organized as
a forward group and a backward group. There is an inclusion
relationship between a compressed vector and its previous one,
and there is an exclusion relationship between a compressed
vector and its next one. Furthermore, in the forward group,
each subgroup represents analogous candidate trajectories with
the same starting stay point. And in the backward group, each
subgroup indicates analogous candidate trajectories with the
same ending stay point. Accordingly, the group generation
method can organize the disordered compressed vectors into
two groups with valuable relationships.

B. Forward and Backward Detectors

Based on the forward and backward groups, we need to
construct a detector that not only captures the inclusion,
exclusion and analogy relationships, but also calculates the
probabilities of compressed vectors of candidate trajectories.
Benefiting from the group generation, we can leverage two
Bidirectional LSTM-based detectors to capture the relation-
ships while calculating the probabilities. For the inclusion and
exclusion relationships, if we regard each subgroup as a hor-
izontal sequence (in Table II), the inclusion relationships are
converted to the left-to-right relationships, and the exclusion
relationships are converted to the right-to-left relationships.
This interesting property inspires us to use a Bidirectional
LSTM (BiLSTM) [12] to model the inclusion and exclusion
relationships. For the analogy relationships, the forward and
backward groups are input to two detectors sharing the same
structure, and each subgroup will be separately calculated. In
this way, each detector will focus on one type of analogy
relationship (forward or backward), and different subgroups
with different starting or ending indexes are independent. After
that, two detectors output two discrete probability distributions
w.r.t. forward and backward groups, and each probability
corresponds to a compressed vector of candidate trajectory. In
addition, we use a stacked BiLSTM network as a detector [13],
which can better extract the sequential features at different
timescale [14]. Next, we introduce two detectors, and then
present the workflow in detail.
Forward Detector. As shown on the left side in Figure 7,
the forward detector is a stacked BiLSTM network with
L BiLSTM layers. It takes a forward group as input, and
calculates the compressed vectors of each subgroup in a
sequential manner. To be specifically, a subgroup gi′ =
⟨vc(i′,i′+1), v

c
(i′,i′+2), . . . , v

c
(i′,n)⟩ (i′ ∈ [1, n)) is fed into the

first BiLSTM layer equipped with a forward LSTM and a
backward LSTM. The forward LSTM output sequence

→
h i′ ,

is iteratively calculated using inputs of gi′ from left to right,
while the backward LSTM output sequence,

←
h i′ , is obtained

using the reversed inputs of gi′ from right to left. Both the
forward and backward LSTM outputs are calculated based on
the standard LSTM equation, i.e., Equation 2. Then a hidden
sequence hi′ is calculated by concatenating

→
h i′ and

←
h i′ as

follows:

hi′ = [
→
h i′ ,

←
h i′]×Wf1 + bf1 (9)

where Wf1 is the weights of fully connected layer, and bf1
denotes the biases of Wf1. To facilitate the calculation of sub-
sequent BiLSTM layers, the length of hi′ is equals to those of
→
h i′ and

←
h i′ . Formally, hi′ = ⟨h(i′,i′+1), h(i′,i′+2), . . . , h(i′,n)⟩,

where h(i′,i′+1) is the hidden vector corresponding to
vc(i′,i′+1), and n is the number of stay points.

After obtaining the all the hidden sequences of subgroups
from the first BiLSTM layer, the hidden sequences are re-
cursively computed from the second BiLSTM layer to L-
th BiLSTM layer. Once the top-layer hidden sequences are

LSTMLSTM LSTM
BiLSTM (Layer 1)

BiLSTM (Layer)

LSTM LSTM

LSTMLSTM

LSTM

LSTM
BiLSTM (Layer 1)

BiLSTM (Layer)

Forward Detector Backward Detector

LSTM LSTM LSTMLSTM LSTM LSTM

Fig. 7. Forward and Backward Detectors

computed, the probability vector of each subgroup can be
obtained as follows:

p̂f
i′ = Softmax(hL

i′ ×Wf2 + bf2) (10)

where p̂f
i′ is a probability vector of gi′ subgroup (p̂f

i′ =

[p̂f(i′,i′+1), p̂
f
(i′,i′+2), . . . , p̂

f
(i′,n)]), hL

i′ is the hidden sequence
of gi′ in L-th layer, and Wf2 is the weights of a fully
connected layer and bf2 denotes biases of Wf2. Finally, the
output of the forward detector is obtained by concatenating
all the probability vector (from p̂f

1 to p̂f
n−1) as P̂f

=

[p̂f(1,2), p̂
f
(1,3), . . . , p̂

f
(n−1,n)].

Backward Detector. As shown on the right side in Figure 7,
the backward detector is a stacked BiLSTM network with
L BiLSTM layers, which is the same as the forward de-
tector. It takes the backward group as input, and calculates
the probabilities of compressed vectors in each subgroup.
Following the calculations of the forward detector, we can
obtain the probability vector of each subgroup in the backward
group, as p̂b

j′ = [p̂b(j′−1,j′), p̂
b
(j′−2,j′), . . . , p̂

b
(1,j′)] (j′ ∈ (1, n]).

And the output of the backward detector is obtained by
flattening all the probability vector (from p̂b

2 to p̂b
n) as P̂b

=

[p̂b(1,2), p̂
b
(2,3), . . . , p̂

b
(1,n)].

Workflow. In the offline stage, the forward and backward
detectors are trained separately. The inputs are the forward
and backward groups derived from the group generation. The
labels are two discrete probability distributions derived from
the label processing (detailed in the next subsection). For each
forward group as input, the forward detector needs to minimize
the Kullback-Leibler Divergence (KLD) loss as follows:

Lf
KLD =

∑
p
f

(i′,j′)∈P
f ,p̂

f

(i′,j′)∈P̂
f

pf(i′,j′)log

(
pf(i′,j′)

p̂f(i′,j′)

)
(11)

where Pf is the label probability distribution from the label
processing, and P̂

f
is the probability distributions output from

the forward detector. For each backward group as input, the
backward detector needs to minimize the KLD loss as follows:

Lb
KLD =

∑
pb
(i′,j′)∈P

b,p̂b
(i′,j′)∈P̂

b

pb(i′,j′)log

(
pb(i′,j′)

p̂b(i′,j′)

)
(12)

where Pb is the label probability distribution and P̂
b

is the
probability distributions output from the backward detector.

Thereafter, in the online stage, the trained forward and
backward detectors can be used to detect the loaded trajectory
by merging the output probability distributions. Specifically,
the output distributions of two detectors, i.e., P̂

f
and P̂

b
,

are firstly merged into one intermediate vector, where each
element is obtained by adding the probabilities with the same
index in both distributions. Then the intermediate vector is
normalized by rescaling the range of all elements to [0, 1],
thus obtaining the merged probability distribution P̂ , and each
probability indicates the likelihood that a candidate trajectory
of being a loaded trajectory. Finally, the index of the maximum
probability in P̂ determines the detected loaded trajectory.
For example, if p̂(i′,j′) is the maximum probability in P̂ ,
the detected loaded trajectory is ⟨spi′ 99K spj′⟩. Formally,
given a merged probability distribution P̂ , the detected loaded
trajectory t̂r

l
can be determined as follows:

t̂r
l
= ⟨spi′ 99K spj′⟩, (i′, j′) = argmax

(i′,j′)
P̂, (13)

where (i′, j′) denotes the index of a probability p̂(i′,j′) ∈ P̂ .
According to (i′, j′), we can select the candidate trajectory
⟨spi′ 99K spj′⟩ as the detected loaded trajectory t̂r

l
.

C. Label Processing

To separately train the forward and backward detectors, we
need to prepare two labels for each pair of forward and back-
ward groups. Intuitively, we can acquire two discrete proba-
bility distributions (called real labels), based on the archived
loaded trajectory. Each real label is like a one-hot vector where
only one probability equals 1 while others are 0. Specifically, a
real label of forward group is Pf = [pf(1,2), p

f
(1,3), . . . , p

f
(n−1,n)].

There is one probability pf(i′,j′)=1 indicating that the candidate
trajectory ⟨spi′ 99K spj′⟩ is the loaded trajectory, and other
probabilities are 0. Similarly, a real label of backward group
is Pb = [pb(1,2), p

b
(2,3), . . . , p

b
(1,n)], where pf(i′,j′)=1, and other

probabilities are 0. However, the zero probabilities in real
labels will cause undefined log(0) in Equation (11) and (12),
leading to invalid KLD losses. Therefore, we introduce a small
constant ϵ, e.g., ϵ = 10−5, and process the real labels as
follows:

Pf = [pf(1,2) = ϵ, pf(1,3) = ϵ, ..., pf(i′,j′) = 1− kϵ, ..., pf(n−1,n) = ϵ]

Pb = [pb(1,2) = ϵ, pb(2,3) = ϵ, ..., pb(i′,j′) = 1− kϵ, ..., pb(1,n) = ϵ]

where n is the number of stay points and k is the number
of probabilities with ϵ in a real label. Thus, Pf and Pb as
two discrete probability distributions can be effectively used
to train the detectors.

VI. EXPERIMENT

A. Experimental Settings

Dataset. The dataset used in our experiments is collected from
the city of Nantong, China. Nantong is heavily dependent
on the chemicals industry, which contributes a proportion of
41.9% in the secondary industry GDP of Nantong in 2020.
The dataset contains the historical raw trajectories and loaded
trajectories. The raw trajectories are generated by HCT trucks
within one day, and the loaded trajectories are extracted from
the raw trajectories by government employees. It is easy to
collect a large number of raw trajectories through GPS sensors,

but it is costly to obtain the real loaded trajectory as ground
truth, since employees are required to carefully determine the
loaded trajectory from each raw trajectory one by one.

To the best of our ability, we collect 5,968 raw trajectories
with loaded trajectories generated by 2,734 HCT trucks which
are operated in Nantong, over a period of 2 months (from
September 1th to October 31th, 2020). The GPS points of
trajectories are based on WGS84 coordinate system [15], and
the average sampling interval is around 2 minutes2. We split
the dataset into training set, validation set and test set with
a splitting ratio of 8:1:1. In addition, the HCT trucks of
the validation set and test set do not overlap with the HCT
trucks of the training set, thus making the evaluation more
convincing.
Baselines. We compare our LEAD with several representative
baselines. To the best of our knowledge, there is no existing
solution that can detect the loaded trajectory for hazardous
chemicals transportation. Therefore, we design the following
stay point-based methods for comparison:
(1) SP-R: It detects the loaded trajectory via a rule-based
classifier. Specifically, after the noise filtering and stay point
extraction, a rule-based classifier can find all the potential load-
ing/unloading (l/u) stay points, by matching each stay point
with locations in the white list. The white list is generated
from the training set, both ends of each loaded trajectory as
two locations (i.e., loading and unloading locations) are stored
in the white list. If a stay point nears a location in the white list,
it is an l/u stay point. Otherwise, the stay point is an ordinary
stay point (i.e., stay point neither loading nor unloading). For
each stay point, we set the searching radius to 500m. Next,
we can determine a loading stay point and an unloading stay
point from all l/u stay points. Based on our domain-specific
knowledge, a loaded trajectory always starts with a loading
stay point and ends with a unloading stay point. Thus, we
consider a greedy strategy, which sets the first (earliest) l/u
stay point as the loading stay point, and sets the last (latest)
l/u stay point as the unloading stay point.
(2) SP-GRU: It detects the loaded trajectory via a GRU-based
classifier. Specifically, after the noise filtering and stay point
extraction, we introduce a GRU [16] with 128 hidden units
as a binary classifier to classify each stay point into l/u stay
point or ordinary stay point, where the input is the feature
sequence of a stay point. Thereafter, the greedy strategy is
used to determine a loading stay point and an unloading stay
point from all l/u stay points.
(3) SP-LSTM: It detects the loaded trajectory via a LSTM-
based classifier. The SP-LSTM is similar to SP-GRU except
for the classifier. We use a LSTM with 128 hidden units as a
binary classifier to classify each stay point into l/u stay point
or ordinary stay point. Similarly, the greedy strategy is used
to determine a loading stay point and an unloading stay point
based on all l/u stay points.

2The detailed statistics of the dataset are not disclosed, due to our data
confidential agreement.

We note that the three baselines will suffer from invalid
detection results, when finding insufficient l/u stay points (e.g.,
0 or 1 l/u stay point). In this case, we will set the first extracted
stay point as the loading stay point and set the last one as the
unloading stay point, as a default loaded trajectory.
Variants. To evaluate each component of our framework, we
perform ablation studies with the following variants of LEAD:
(1) LEAD-NoPoi: We remove the POI feature in the feature
extraction, and we use zero padding as the pseudo POI feature,
keeping the dimension of the feature vector constant.
(2) LEAD-NoSel: We remove the self-attention mechanism in
the hierarchical autoencoder. Instead, we directly use the last
hidden state vector of each LSTM in the compressor.
(3) LEAD-NoHie: We remove the hierarchy and separation
structures in the hierarchical autoencoder. There is only one
compression operator and one decompression operator in the
compressor and decompressor, respectively.
(4) LEAD-NoGro: We remove the group generation in the
loaded trajectory detection. After deleting it, the forward and
backward detectors are unavailable. We substitute the forward
and backward detectors with 4 fully connected layers with
Sigmoid activator to calculate the probability of each candidate
trajectory. Specifically, the number of units from the first layer
to the fourth layer is set to 64, 32, 32, and 1, respectively, and
the Sigmoid activator is set in the fourth layer to output the
probability.
(5) LEAD-NoFor: We remove the forward detector in the
loaded trajectory detection, and only use the probability dis-
tribution of backward detector to detect the loaded trajectory.
(6) LEAD-NoBac: We remove the backward detector in the
loaded trajectory detection, and only use the probability dis-
tribution of forward detector to detect the loaded trajectory.
Evaluation Metric. The purpose of our defined problem is to
detect the loaded trajectory from a raw trajectory. Thus, we
define the detection accuracy to show the performance of our
framework and baselines as follows:

Acc =

∑Nte
i=1 hiti

Nte
× 100%, hiti =

{
1, if t̂r

l
i = trli,

0, otherwise,
(14)

where Nte is number of test samples, hiti indicates that if
i-th detected loaded trajectory hits the ground truth loaded
trajectory, t̂r

l

i denotes i-th detected loaded trajectory, and trli
denotes i-th ground truth loaded trajectory. The larger value
of Acc indicates that the method detect the loaded trajectory
more accurately.
Implementation Details. We set the hyperparameters in
LEAD throughout the experiments as follows:
(1) Raw Trajectory Processing: Firstly, in noise filtering, the
speed threshold Vmax is set to 130km/h since the moving
speed of an HCT truck rarely exceeds this threshold. Secondly,
in stay point extraction, We test different parameter combi-
nations and find that most staying behaviors (e.g., loading,
unloading, resting, etc.) can be included in stay points when
we set Dmax = 500m and Tmin = 15min. Based on
the dataset, the number of stay points extracted from a raw
trajectory ranges from 3 ∼ 14, which is reasonable for

the staying times of an HCT truck within one day. Finally,
in candidate trajectory generation, the number of generated
candidate trajectories ranges from 3 ∼ 91, deriving from the
number of stay points.
(2) Candidate Trajectory Encoding: For the feature extraction,
we collect 415,639 POIs in Nantong and categorize them into
29 typical categories, e.g., company, hospital, chemical factory,
etc. The collected POIs are used to extract the POI feature of
a GPS point, and the dimension of a feature vector is 32. For
the hierarchical autoencoder, all compression operators in the
compressor share the same architecture, and all decompression
operators in the decompressor share the same architecture. To
keep the hierarchical autoencoder within a tractable size, the
number of hidden units in each LSTM and fully connected
layer are the same, and we set the number of hidden units
in the hierarchical autoencoder as 32. Thus, the compressed
vector of any feature sequence has a fixed dimension of 64.
(3) Loaded Trajectory Detection: For the forward and back-
ward detectors, all LSTMs have 64 hidden units, and the fully
connected layers for calculating the probabilities have 1 unit.
In addition, we tune the number of BiLSTM layers L from 1
to 10 and find the highest detection accuracy when L = 4 on
the validation set, thus we set L = 4 as the default. For the
label processing, we set the small constant ϵ to 10−5.

Finally, for the offline phase of the hierarchical autoencoder,
and the forward and backward detectors, we use the Adam
optimizer [17] for updating the parameters with a scheduled
learning rate of 0.0001. The training bath size is set to 1,
because the dimension of the inputs (i.e., feature sequences
and forward/backward groups) are not fixed. Nevertheless,
we backpropagate the average loss of B consecutive training
samples to simulate an iteration of batch training, and we
set B as 64, thus improving the training efficiency to a
certain extent. The above hyperparameters are tuned on the
validation set by using the grid search. In addition, we use
Early Stopping [18] to avoid the overfitting of the neural
networks. Our experimental results are reported based on the
above settings, unless expressly specified.
Environment. We implement all algorithms in Python 3.7.10,
and run the experiments on an Ubuntu Server with an Intel(R)
CPU i7-4770@3.4GHz, and NVIDIA Tesla V100 GPU.

B. End-to-End Evaluation of LEAD

In this subsection, we study the end-to-end performance of
LEAD by comparing it against several baselines in terms of
accuracy and efficiency.
Detection Accuracy. We adopt Acc defined by Equation (14)
to evaluate the detection accuracy of LEAD. To make the
evaluation more clearly, we separately report Acc under the
different numbers of stay points on the test set, in Table III.
As depicted, our LEAD outperforms all the other detection
methods for all the test cases, and the accuracy of all the meth-
ods can be ranked as: LEAD>>SP-LSTM>SP-GRU>SP-R.
We can see that as the number of stay points increases, the
accuracy of all the methods decreases, due to the increased
difficulty of detection. The details are as follows:

TABLE III
ACCURACY OF BASELINES AND OURS (LEAD) ON THE TEST SET

Acc(%) #Stay Points (Percentage%)

Method 3∼5
(22%)

6∼8
(34%)

9∼11
(25%)

12∼14
(19%)

3∼14
(100%)

SP-R 60.2 54.2 46.8 33.3 49.7
SP-GRU 66.4 63.5 54.7 49.2 59.2

SP-LSTM 67.2 63.9 56.2 51.6 60.4
LEAD 95.6 92.4 87.5 83.8 90.2

(1) 3∼5 Stay Points: There are 22% of raw trajectories that
have 3∼5 stay points in the test set, thus the number of
candidate trajectories ranges from 3∼10. In this case, LEAD
outperforms SP-R by 59%, SP-GRU by 44%, SP-LSTM by
42% on Acc.
(2) 6∼8 Stay Points: There are 34% of raw trajectories that
have 6∼8 stay points in the test set, thus the number of
candidate trajectories ranges from 15∼28. In this case, LEAD
outperforms SP-R by 70%, SP-GRU by 46%, SP-LSTM by
45% on Acc.
(3) 9∼11 Stay Points: There are 25% of raw trajectories that
have 9∼11 stay points in the test set, and the number of
candidate trajectories ranges from 36∼55. In this case, LEAD
outperforms SP-R by 87%, SP-GRU by 60%, SP-LSTM by
56% on Acc.
(4) 12∼14 stay points: There are 19% of raw trajectories that
have 12∼14 stay points in the test set, and the number of
candidate trajectories ranges from 66∼91. In this case, LEAD
outperforms SP-R by 1.5×, SP-GRU by 70%, SP-LSTM by
62% on Acc.
(5) 3∼14 stay points: In the test set, all raw trajectories have
3∼14 stay points, and the number of candidate trajectories
ranges from 3∼91. In this case, LEAD outperforms SP-R by
81%, SP-GRU by 52%, SP-LSTM by 49% on Acc.

It is expected that SP-R performs the worst among all
the methods since the defective rule-based classifier cannot
cover all the locations in the white list, and returns the
default loaded trajectory frequently. For the poor performance
of SP-GRU and SP-LSTM, the main reasons are three-fold.
Firstly, LEAD generates all candidate trajectories of a raw
trajectory, and detects the loaded trajectory based on their
probabilities. While SP-GRU and SP-LSTM, similar to SP-R,
cannot specify the loaded trajectory when classifiers return 0
or 1 l/u stay point, obtaining the inaccurate default loaded
trajectory. Secondly, LEAD captures not only the features
of stay points but also the features of move points, while
SP-GRU and SP-LSTM only consider the features of stay
points, lacking the moving information between stay points.
Thirdly, LEAD captures the inclusion, exclusion and analogy
relationships between candidate trajectories, which is benefit to
detect the accurate loaded trajectory. SP-GRU and SP-LSTM
treat each stay point as an independent sample and detect the
loaded trajectory based on their probabilities.
Efficiency. We record the mean inference time of all the
methods to detect the loaded trajectory on the test set, and
separately report them under the different numbers of stay
points in Figure 8. As we can see, LEAD requires around
12 ∼ 25s in all the test cases, which is much faster than

3~5 (22%) 6~8 (34%) 9~11 (25%) 12~14 (19%) 3~14 (100%)
5

15

25

35

45

55

65

75

#Stay Points (Percentage%)

M
in

 I
n

fe
re

n
c
e
 T

im
e
 (

s
)

SP-R SP-GRU SP-LSTM LEAD

Fig. 8. Inference Time of Baselines and Ours (LEAD) on the Test Set

TABLE IV
ACCURACY OF LEAD AND LEAD-VARIANTS ON THE TEST SET
Acc(%) #Stay Points (Percentage%)

Method 3∼5
(22%)

6∼8
(34%)

9∼11
(25%)

12∼14
(19%)

3∼14
(100%)

LEAD-NoPoi 85.7 83.1 77.6 72.4 80.3
LEAD-NoSel 93.6 89.4 82.7 78.3 86.5
LEAD-NoHie 90.4 86.7 81.3 76.4 84.2
LEAD-NoGro 88.6 85.2 80.9 77.2 83.4
LEAD-NoFor 94.0 91.3 85.8 82.7 88.9
LEAD-NoBac 93.5 90.6 86.3 82.2 88.6

LEAD 95.6 92.4 87.5 83.8 90.2

other methods. Specifcally, LEAD outperforms SP-R by 64
∼ 71%, SP-GRU by 11 ∼ 20%, and SP-LSTM by 14 ∼ 25%
in all the test cases. SP-R performs the worst since it needs to
traverse all the locations of white list when classifying a stay
point. For SP-GRU and SP-LSTM, they need to classify all
stay points before they return the loaded trajectory. In contrast,
LEAD can return the loaded trajectory by making once forward
computation of each component efficiently.

C. Evaluation of Candidate Trajectory Encoding

Effectiveness of Feature Extraction. In our feature extrac-
tion, we consider the spatiotemporal features and POI features
of a GPS point. To evaluate the effectiveness of the additional
POI features, we compare LEAD against LEAD-NoPoi, and
report the Acc in Table IV. As shown, the accuracy of LEAD
is noticeably better than LEAD-NoPoi. To be specific, LEAD
outperforms LEAD-NoPoi by 11 ∼ 16% in all the test cases,
since it considers the informative POI features, while LEAD-
NoPoi lacks the POI features, leading to lower accuracy.
Effectiveness of Hierarchical Autoencoder. To study the ef-
fectiveness of the hierarchical autoencoder, we compare LEAD
against two variants, including LEAD-NoSel and LEAD-
NoHie, and we report their detection accuracy in Table IV. We
can see that LEAD-NoSel has decent detection accuracy when
the number of stay points is small, but it performs poorly when
the number of stay points is large. Specifically, in the test cases
of 3∼5 and 6∼8 stay points, the accuracy of LEAD-NoSel is
around 90%, while in the test cases of 9∼11 and 12∼14 stay
points, the accuracy of LEAD-NoSel decreases to 82.7% and
78.3%, respectively. This clearly shows that the self-attention
mechanism is helpful for long-range features memorization.
LEAD-NoHie performs noticeably worse than LEAD, specifi-
cally, LEAD-NoHie reduces the accuracy by 5∼ 9% compared
to LEAD, in all the test cases. This is because LEAD-NoHie
ignores not only the difference between stay points and move
points, but also the difference between sequence hierarchies.
We further record the curves of MSE loss (cf. Equation (8)) for

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Epoch

M
S

E
 L

o
s
s

HA in LEAD

HA in LEAD-NoSel

HA in LEAD-NoHie

Fig. 9. Curves of MSE Loss for Several Hierarchical Autoencoders

training the Hierarchical Autoencoder (HA) inside the LEAD,
LEAD-NoSel and LEAD-NoHie on the training set. As shown
in Figure 9, the MSE loss of the HA in LEAD is minimized at
around 7 epoch with 0.038, the MSE loss of the HA in LEAD-
NoSel is minimized at around 9 epochs with 0.042, and the
MSE loss of the HA in LEAD-NoHie is minimized at around
13 epochs with 0.053. For the HA in LEAD-NoSel, the com-
pression operators cannot effectively aggregate the historical
features, thus increasing the training convergence epochs and
the MSE loss. For the HA in LEAD-NoHie, the compressor
cannot capture the representative information in the feature
sequence, and the decompressor lacks the ability to restore
the informative feature sequence, thus greatly increasing the
training convergence time and the MSE loss.

D. Evaluation of Loaded Trajectory Detection

Effectiveness of Group Generation. The group generation
is proposed to organize the disordered compressed vectors
into forward and backward groups with inclusion, exclusion
and analogy relationships. To evaluate the effectiveness of
the group generation, we compare LEAD against LEAD-
NoGro, and report the Acc in Table IV. As depicted, the
accuracy of LEAD is noticeably better than LEAD-NoGro.
Specifically, LEAD outperforms LEAD-NoGro by 8 ∼ 9× in
all the test cases, this is because LEAD-NoGro treats each
candidate trajectory as an independent sample and calculates
the probability using the compressed vector, and ignores the
relationships between candidate trajectories.
Effectiveness of Forward and Backward Detectors. The
forward and backward detectors are designed to capture
the relationships inside the forward and backward groups,
respectively, while calculating the probability distributions.
To evaluate the effectiveness of the group generation, we
compare LEAD against two variants, including LEAD-NoFor
and LEAD-NoBac, and report their detection accuracy in
Table IV. We can see that both LEAD-NoFor and LEAD-
NoBac have decent detection accuracy, but still worse than
LEAD. Specifically, LEAD outperforms LEAD-NoFor by
1 ∼ 2%, LEAD-NoBac by 1 ∼ 2% in all the test cases.
The reason is that LEAD can fully capture the informative
relationships in both forward and backward groups, and then
consider the probability distributions from the forward and
backward detectors, thus detecting the loading trajectory
more accurately. LEAD-NoFor and LEAD-NoBac could
easily obtain the sub-optimal solution due to the one-sided
consideration. To further study the training effectiveness of
the forward and backward detectors, we record the curves of
KLD loss (cf. Equation (11)–(12)) for training the forward

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

Epoch

K
L

D
 L

o
s
s

Forward Detector

Backward Detector

Fig. 10. Curves of KLD Loss for Forward and Backward Detectors

and backward detectors on the training set. As shown in
Figure 10, the KLD loss of the forward detector is minimized
at around 12 epochs with 0.296, and the KLD loss of the
backward detector is minimized at around 11 epochs with
0.289. This proves that both forward and backward detectors
can effectively approximate the label probability distributions
and converge.

VII. RELATED WORK

Hazardous Chemicals Transportation Problem. The prob-
lem of HCT attracts great attention in urban management
since it is ubiquitous and dangerous. In academia, tremendous
efforts have been devoted to dealing with HCT problem [4],
[19]–[27]. Zhu et al. [4] propose an approach to find out
unregistered and unqualified hazardous chemical facilities by
mining HCT trajectories. Fabiano et al. [19] present a site-
oriented framework for hazardous chemical facilities risk
assessment. Planas et al. [21] provide a monitoring system to
monitor HCT trucks based on regional responsibilities. Wang
et al. [25] build a system for risky zones identification based
on HCT trajectories. In this work, we propose and address the
problem of loaded trajectory detection, which can help better
manage and monitor the HCT process.
Urban Computing. Urban computing [28] aims to solve the
issues caused by human’s rapid progress in urbanization, such
as bike lane planning recommendation [29], [30], crime rate
inference [31], air quality prediction [32], fire risk predic-
tion [33], crowd flow alert [34], [35], and resource rebal-
ancing [36]. In this work, we focus on detecting the loaded
trajectory from raw trajectory of the HCT truck, which is
benefit for better supervising the HCT process in a city.

VIII. CONCLUSION

In this work, we propose a deep learning-based framework
LEAD, to detect the loaded trajectory from the raw HCT
trajectory accurately. LEAD firstly processes a raw trajectory
into a set of candidate trajectories, and then encodes each
candidate trajectory into a compressed vector. Finally, LEAD
detects the loaded trajectory using the compressed vectors of
candidate trajectories. Experiments show that the detection
accuracy of LEAD exceeds 83% which outperforms competing
baselines by at least 42%.

ACKNOWLEDGMENT

This work is partially supported by NSFC (No. 61972069,
61836007 and 61832017), National Key R&D Program of
China (2019YFB2101801) and Shenzhen Municipal Science
and Technology R&D Funding Basic Research Program
(JCYJ20210324133607021).

REFERENCES

[1] 30 officials punished over deadly tank blast in east china. [Online].
Available: http://www.xinhuanet.com/english/2021-01/02/c 139636668.
htm

[2] J. Wang, C. Chen, J. Wu, and Z. Xiong, “No longer sleeping with a
bomb: a duet system for protecting urban safety from dangerous goods,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 1673–1681.

[3] Precautions for the transportation of hazardous chemicals. [On-
line]. Available: http://yjt.hubei.gov.cn/yjkp/yjwkt/202109/t20210901
3731770.shtml

[4] Z. Zhu, H. Ren, S. Ruan, B. Han, J. Bao, R. Li, Y. Li, and Y. Zheng,
“Icfinder: A ubiquitous approach to detecting illegal hazardous chemical
facilities with truck trajectories,” in Proceedings of the 29th International
Conference on Advances in Geographic Information Systems, 2021, pp.
37–40.

[5] Restrictions of hazardous chemicals transportation. [Online].
Available: http://zscom.zhoushan.gov.cn/art/2020/3/9/art 1228969521
42453341.html

[6] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 6, no. 3, pp. 1–41, 2015.

[7] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining
user similarity based on location history,” in Proceedings of the 16th
ACM SIGSPATIAL international conference on Advances in geographic
information systems, 2008, pp. 1–10.

[8] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, “Analysis of
microarray data using z score transformation,” The Journal of molecular
diagnostics, vol. 5, no. 2, pp. 73–81, 2003.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[11] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” arXiv preprint arXiv:1803.02155, 2018.

[12] S. Zhang, D. Zheng, X. Hu, and M. Yang, “Bidirectional long short-
term memory networks for relation classification,” in Proceedings of the
29th Pacific Asia conference on language, information and computation,
2015, pp. 73–78.

[13] C. Bian, H. He, and S. Yang, “Stacked bidirectional long short-term
memory networks for state-of-charge estimation of lithium-ion batter-
ies,” Energy, vol. 191, p. 116538, 2020.

[14] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct
deep recurrent neural networks,” arXiv preprint arXiv:1312.6026, 2013.

[15] J. A. Slater and S. Malys, “Wgs 84—past, present and future,” in
Advances in Positioning and Reference Frames. Springer, 1998, pp.
1–7.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv e-prints, 2014.

[18] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” in NIPS,
2000, p. 381–387.

[19] B. Fabiano, F. Currò, A. P. Reverberi, and R. Pastorino, “Dangerous
good transportation by road: from risk analysis to emergency planning,”
Journal of Loss Prevention in the process industries, vol. 18, no. 4-6,
pp. 403–413, 2005.

[20] B. Y. Kara and V. Verter, “Designing a road network for hazardous
materials transportation,” Transportation Science, vol. 38, no. 2, pp.
188–196, 2004.

[21] E. Planas, E. Pastor, F. Presutto, and J. Tixier, “Results of the mitra
project: Monitoring and intervention for the transportation of dangerous
goods,” Journal of hazardous materials, vol. 152, no. 2, pp. 516–526,
2008.

[22] G. Purdy, “Risk analysis of the transportation of dangerous goods by
road and rail,” Journal of Hazardous materials, vol. 33, no. 2, pp. 229–
259, 1993.

[23] M. Verma, “Railroad transportation of dangerous goods: A conditional
exposure approach to minimize transport risk,” Transportation research
part C: emerging technologies, vol. 19, no. 5, pp. 790–802, 2011.

[24] M. Verma and V. Verter, “Railroad transportation of dangerous goods:
Population exposure to airborne toxins,” Computers & operations re-
search, vol. 34, no. 5, pp. 1287–1303, 2007.

[25] J. Wang, C. Chen, J. Wu, and Z. Xiong, “No longer sleeping with a
bomb: a duet system for protecting urban safety from dangerous goods,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 1673–1681.

[26] D. Meng, Y. Jia, J. Du, and F. Yu, “Data-driven control for relative degree
systems via iterative learning,” IEEE Transactions on Neural Networks,
vol. 22, no. 12, pp. 2213–2225, 2011.

[27] W. Li, Y. Jia, J. Du, and J. Zhang, “Distributed multiple-model esti-
mation for simultaneous localization and tracking with nlos mitigation,”
IEEE transactions on vehicular technology, vol. 62, no. 6, pp. 2824–
2830, 2013.

[28] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on In-
telligent Systems and Technology (TIST), vol. 5, no. 3, pp. 1–55, 2014.

[29] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes based
on sharing-bikes’ trajectories,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 2017,
pp. 1377–1386.

[30] T. He, J. Bao, S. Ruan, R. Li, Y. Li, H. He, and Y. Zheng, “Interactive
bike lane planning using sharing bikes’ trajectories,” IEEE Transactions
on Knowledge and Data Engineering, vol. 32, no. 8, pp. 1529–1542,
2019.

[31] H. Wang, D. Kifer, C. Graif, and Z. Li, “Crime rate inference with
big data,” in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp. 635–
644.

[32] X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep distributed
fusion network for air quality prediction,” in Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2018, pp. 965–973.

[33] M. Madaio, S.-T. Chen, O. L. Haimson, W. Zhang, X. Cheng, M. Hinds-
Aldrich, D. H. Chau, and B. Dilkina, “Firebird: Predicting fire risk and
prioritizing fire inspections in atlanta,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 185–194.

[34] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Thirty-first AAAI conference on
artificial intelligence, 2017.

[35] C. Shi, X. Han, L. Song, X. Wang, S. Wang, J. Du, and S. Y.
Philip, “Deep collaborative filtering with multi-aspect information in
heterogeneous networks,” IEEE transactions on knowledge and data
engineering, vol. 33, no. 4, pp. 1413–1425, 2019.

[36] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike sharing
systems: A multi-source data smart optimization,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 1005–1014.

http://www.xinhuanet.com/english/2021-01/02/c_139636668.htm
http://www.xinhuanet.com/english/2021-01/02/c_139636668.htm
http://yjt.hubei.gov.cn/yjkp/yjwkt/202109/t20210901_3731770.shtml
http://yjt.hubei.gov.cn/yjkp/yjwkt/202109/t20210901_3731770.shtml
http://zscom.zhoushan.gov.cn/art/2020/3/9/art_1228969521_42453341.html
http://zscom.zhoushan.gov.cn/art/2020/3/9/art_1228969521_42453341.html

	Introduction
	Overview
	Preliminary Concepts
	Framework Overview

	Raw Trajectory Processing
	Candidate Trajectory Encoding
	Feature Extraction
	Hierarchical Autoencoder

	Loaded Trajectory Detection
	Group Generation
	Forward and Backward Detectors
	Label Processing

	Experiment
	Experimental Settings
	End-to-End Evaluation of LEAD
	Evaluation of Candidate Trajectory Encoding
	Evaluation of Loaded Trajectory Detection

	Related Work
	Conclusion
	References

