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Abstract—Most real-world data are scattered across different companies or government organizations, and cannot be easily
integrated under data privacy and related regulations such as the European Union’s General Data Protection Regulation (GDPR) and
China’ Cyber Security Law. Such data islands situation and data privacy & security are two major challenges for applications of
artificial intelligence. In this paper, we tackle these challenges and propose a privacy-preserving machine learning model, called
Federated Forest, which is a lossless learning model of the traditional random forest method, i.e., achieving the same level of accuracy
as the non-privacy-preserving approach. Based on it, we developed a secure cross-regional machine learning system that allows a
learning process to be jointly trained over different regions’ clients with the same user samples but different attribute sets, processing
the data stored in each of them without exchanging their raw data. A novel prediction algorithm was also proposed which could largely
reduce the communication overhead. Experiments on both real-world and UCI data sets demonstrate the performance of the
Federated Forest is as accurate as of the non-federated version. The efficiency and robustness of our proposed system had been
verified. Overall, our model is practical, scalable and extensible for real-life tasks.
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1 INTRODUCTION

A RTIFICIAL intelligence has made great progress in re-
cent years thanks to the large amount of data col-

lected in different domains. Unfortunately, the data has also
arisen to be the largest bottleneck for the implementation
of AI methods. In real-world applications, the big data are
scattered across different companies or government orga-
nizations and stored in the form of data islands, in other
words, data across different domains cannot be shared with
each other. For companies, the data is among one of the
most important assets of companies which cannot be easily
shared. Governments’ data are highly secured and mostly
not utilized. Besides, people now are very sensitive about
data privacy. Data breaches happen occasionally and most
countries now either have data privacy-related legislation
enacted or being drafted. In 2018, the European Union
enacted the General Data Protection Regulation (GDPR) [1].
The GDPR provides individuals with more control over
their personal data and states strict principles and absolute
transparencies on how businesses should handle these data.
Any type of tracking or record of personal data must be
authorized by the customer before collection and business
must clearly state their intentions and plans for the data. For
example, profiling is an important application of machine
learning and now almost every business uses it for ana-
lyzing customers and targeted advertising. The technique
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itself is neutral and GDPR does not prohibit it. However,
the usage of profiling now often causes discrimination on
customers, which will not be allowed under GDPR.

Faced with the difficulties and restrictions, the question
becomes if it is worth investing in the effort to make use
of the scattered data. The answer is yes. Academia, compa-
nies and governments could all benefit from resolving the
data islands situation. The joint-models are able to improve
many current services and products, and support more
potential applications, including but not limited to med-
ical study, targeted marketing, urban anomalies detection
and risk management, as shown in Figure 1. For example,
banks could train joint-models with e-commerce companies
to achieve precise customer profiling and improve their
marketing strategies. Government organizations could work
with ride-hailing companies to have a better understanding
of the city’s daily traffic flow and adjust the road planing to
optimize the traffic during peak hours.

Consequently, the question becomes how can we train
the joint-models across different domains or organizations
securely. Faced with the challenges of data islands and data
privacy & security, the currently available methods cannot
completely solve the problems. Because of this, develop-
ing new methods to bridge the gap between real-world
applications and data islands becomes an urgent problem.
In 2016, a new approach named federated learning [2],
[3], [4] was proposed, which mainly focuses on building
privacy-preserving machine learning models when data
are distributed in different places and cannot be directly
collected and stored in one place. A typical application of
their work is the word typing prediction on mobile devices.
Since the typed words are all private information of the
customer, any direct collection is at the risk of violation of
laws and regulations, including GDPR. With the federated
learning methods, parts of the modeling process can be
done on mobile devices and only necessary trained model
parameters are uploaded and downloaded to the central
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Fig. 1. New Era of Machine Learning

servers, and no privacy was revealed.
Federated learning has provided a new approach to

look at the current problems, and shown the possibility
of real-life applications. Inspired by their work, we pro-
pose a novel privacy-preserving tree-based machine learn-
ing model, named Federated Forest (FF). Based on it, we
developed a secure cross-regional machine learning system,
which is capable of conquering the challenges described
above. The core idea here is to distribute the best feature
selection process of each tree node on each client, and
the master server will collect the local best impurity im-
provement from all clients and decide which client will
provide the best split feature for the current tree node. In
this way, a global tree-based model can be built without
exchanging any raw data, and each client only has limited
and self-related information about this global model, and
not knowing anything of other clients. To reduce the com-
munication in prediction, we have taken the advantages of
the distributed tree structure and develop a new prediction
method. Our contributions are four-folds:

• Secured privacy. Data privacy is fully protected by
redesigning the tree building algorithms, applying
encryption methods and establishing a third-party
trusty server. The contents and amount of informa-
tion exchange are limited to a minimum, and each
participant is blind to others.

• Lossless (accurate). Our model is based on the
methodologies of CART [5] and bagging [6], and
fits the vertical federated setting. We experimentally
proved that our model can achieve the same level of
accuracy as the non-federated approach that brings
the data into one place.

• Efficiency. An efficient communication mechanism
was implemented for the sharing of the intermediate
modeling values. A fast prediction algorithm was
designed and it’s weakly correlated (scale-free) to the
number of domains and trees, maximum tree depth
and sample size.

• Practicability and scalability. Our model sup-
ports both classification and regression tasks and is
strongly practical, extensible and scalable for real-
life applications. The experiments on real-world data
sets had proved our model’s accuracy, efficiency and
robustness.

2 RELATED WORK

In this section, we review the current federated learning and
privacy-preserving methods and give the problem formula-
tion.

2.1 Federated Learning
Federated learning [2], [3], [4] was first proposed to solve
the problems that rich data are generated from user devices,
but due to regulations, it’s difficult to build models from the
data. The solution is to keep the data on user devices and
train a shared model by aggregating locally calculated inter-
mediate results in neural networks. In [7] they proposed a
new recommender system that applies federated learning to
meta-learning. Federated learning has also been applied to
solve multi-task problems in [8] and a loss-based AdaBoost
method was developed in [9]. [10] introduced a vertically-
aggregated federated learning method. In their work, each
data provider possessed unique features, and sample IDs
are aligned between them. They jointly learned a logistic
regression model to secure data privacy and keep modeling
accurately. In addition, a modular benchmarking framework
for federated settings was presented in the work of [11].
Although many research products have been coming out,
the definition of federated learning was still blurry until the
work of [12]. They categorized current federated learning
methods into three types, horizontal federated learning,
vertical federated learning and federated transfer learning.
Following this survey, the same team introduced a new
framework known as secure federated transfer learning [13]
to build models for the target-domain party by leveraging
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rich labels from the source-domain party, as the data sets of
the two parties are different in both sample space and fea-
ture space. In [14] they reviewed the tree-boosting method
and applied it to the vertical federated setting. A lossless
framework was proposed and it was able to keep infor-
mation of each private data provider from being revealed.
In [15] they presented a novel reinforcement learning ap-
proach that considers the privacy requirement and builds
Q-network for each agent with the help of other agents.
To make the federated machine learning more practical,
they are pushing to build a Federated AI Ecosystem such
that the partners can fully exploit their data’s value and
promote vertical applications. An IEEE standard Guide For
Architectural Framework And Application Of Federated Machine
Learning [16] was also initialized and is being drafted.

2.2 Data Privacy Protection

In federated learning, there are two major encryption meth-
ods applied for protecting data privacy and security, which
are differential privacy [17] and homomorphic encryption
[18]. The idea of differential privacy is to add properly
calibrated noise to the algorithm or the data, with ex-
amples including [19], [20]. This approach will not affect
computational efficiency too much but may weaken model
performance. Homomorphic encryption is a method that
supports secure multiplication and addition on encrypted
data, and once the result is decrypted, it should match
the output of operations on the corresponding raw data.
The work of [10], [21], [22] all used this approach. If the
encryption algorithm satisfies Equation 1, we call this ad-
dition homomorphism. If Equation 2 is satisfied, we call it
multiplication homomorphism. If both of them are satisfied,
then it is fully homomorphism. Homomorphic encryption
also supports the operation shown in Equation 3.

Encrypt(x)⊕ Encrypt(y) = Encrypt(x+ y) (1)

Encrypt(x)⊗ Encrypt(y) = Encrypt(x× y) (2)

x⊗ Encrypt(y) = Encrypt(x× y) (3)

There are two major drawbacks of homomorphic encryp-
tion. First, the complexity of the algorithm is high and it
will be intensely time-consuming for frequent use. Second,
it does not support operations of non-polynomial functions
very well, such as Sigmoid and Logarithmic function, and
approximations are necessary. In the work of [10] they used
the Taylor expansion to approximate the Sigmoid function
and [23] used the least-squares method. In theory, these
approaches could work but in our practice, the results were
not ideal.

2.3 Random Forest

Random Forest (RF) is an ensemble supervised machine
learning technique, which is widely applied in both classifi-
cation and regression tasks. In general, RF uses the decision
tree as the base classifier and generates multiple decision
trees to make predictions [24], where the randomization
is presented in two different ways: bagging strategy and
random selection of input features. However, building a RF
model requires private individuals’ data. Such private data

is uploaded to a centralized server to extract patterns, and
build models from them. To tackle this issue of privacy-
preserving, a decision-tree classifier [25] was designed for
two parties having their own private database by using
the ID3 learning strategy. While this study mainly con-
sidered horizontally partitioned data, there were several
works that focused on learning tree-based models from ver-
tically partitioned data (i.e., stored in different data sources),
such as [26]. Due to the extremely slow speed of existing
cryptography-based works for privacy-preserving ML tech-
niques, [27] first showed that RF could be naturally appli-
cable in a fully distributed architecture, and then developed
protocols for RF to enable general and efficient distributed
privacy-preserving knowledge discovery. Recently, [28] fol-
lowed the ”locally learn then merge” paradigm in cloud
computing and extended it to RF models. They proposed
ad-hoc procedures for the model encryption (offline) and
the decision-tree evaluation (online), which can be seen as
a privacy-preserving scoring algorithm for RFs. To the best
of our knowledge, in this study, we present the first attempt
to combine RF with the concepts of federate learning for
protecting the data privacy among different data domains.

3 PROBLEM FORMULATION

3.1 Data Distribution
In our work, we focus on the vertical federated learning
problems, in which all participants have the same sample
space but different feature space, as shown in Figure 2.
Consider each company or government organization as a
regional data domain, denoted as Di, then the overall data
domain is D = D1 ∪ D2 ∪ · · · ∪ DM , where 1 ≤ i ≤ M .
M is the number of regional domains. We denote the
feature space of Di as Fi, then the entire feature space
F is F = F1 ∪ F2 ∪ · · · ∪ FM . During the modeling
process, all features’ true names were encoded to protect
privacy. For any i and j, if i 6= j and 1 ≤ i, j ≤ M ,
then Fi ∩ Fj = ∅. In our work, all domains have the
same number of samples and the sample IDs were aligned
across domains. One master machine was deployed as the
parameter server and multiple client machines were used,
where each contains one regional data domain. The labels y
were provided by one of the clients, which we assume to be
the client 1. Then the labels were copied to the master and
clients in encrypted forms. Two things to notice here: 1) In
reality, M is usually small and even M = 5 means there are
five different organizations (i.e., government departments,
banks, insurance companies, etc.) modeling together, which
could be rare. The model design can be totally different
for large M . 2) ID alignment is important for tasks such
as building loan decision model with personal data from
both banks and government, with social security number as
ID. However, we are not going to talk about the methods of
ID alignment since it is another research topic, discussed in
work such as [29]. The notations appeared in this paper are
also shown in Table 1.

3.2 Problem Statement
The formal statement of the problem is given as below:

Given: Regional domain Di and encrypted label y on
each client i, 1 ≤ i ≤M .
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Fig. 2. Federated Forest

Learn: A Federated Forest, such that for each tree in the
forest: 1) a complete tree model T is held on master; 2) a
partial tree model Ti is stored on each client i, 1 ≤ i ≤M .

Constraint: The performance (accuracy, f1-score, MSE,
e.t.c.) of the Federated Forest must be comparable to the
non-federated random forest.

3.3 Notations

• Sample IDs are denoted as S, and Sl
i contains the

sample IDs which fall into leaf l of tree Ti. Sl denotes
the sample set of leaf node l in the complete binary
tree model T .

• The test sample set is H, and the single sample is
h ∈ H.

• Wi is the set of decision making paths of sample h
that goes through the binary tree to fall into the leaf
node of Ti. For the tree Ti, it is possible that h falls
into more than one leaf, due to our model storage
strategy.

• w∗ is the decision making path of the sample h that
goes through the complete binary tree to falls into
the leaf node in T . For the complete tree T , if sample
h fall into one leaf, then it cannot fall into another
leaf. It means that any leaf l and g in T , Sl ∩ Sg = ∅.

• The complete tree T on master is defined as T =
T1 ∪ T2 ∪ · · · ∪ TM .

• The detailed descriptions of notations are shown in
Table 1.

4 METHODOLOGY

In this section, we first give an overview of the framework.
Then we present the Federated Forest model and a novel
prediction method. Lastly, we will discuss data privacy
security methods and analyze the time and communication
complexity.

TABLE 1
Notations

Notation Description
M number of regional domains
Ti partial decision/regression tree stored on ith client
T complete tree T = T1 ∪ T2 ∪ · · · ∪ TM

Ti left left subtree of given Ti

Ti right right subtree of given Ti

Di data set held by client i
Di left subset of Di that fall into left subtree of given Ti

Di right subset of Di that fall into right subtree of given Ti

N total number of samples in training
D entire data set D = {D1,D2, · · · ,DM}
Fi feature space of Di

F entire feature space of D, F = F1 ∪ F2 ∪ · · · ∪ FM

y labels
L leaf nodes set of the entire tree
l, g leaf node of the current tree, l, g ∈ L
O lowest common ancestor of l, g in T

S the sample IDs of entire data set D
Sl
i the sample IDs which fall into leaf l of tree Ti

Sl the sample IDs which fall into leaf l of complete tree T

h single test sample
H entire test sample set
Wi the set of decision making paths of sample h on Ti

w∗ decision making path of sample h on T

k maxmium tree depth

4.1 Framework Overview

Here we present the framework of Federated Forest, which
is based on the CART tree [5] and bagging [6], and is able
to deal with both classification and regression problems, as
shown in Figure 2.

In order to solve the challenges mentioned in section 1,
the random forest method is chosen for its natural advan-
tages. It has been proven effective in many applications and
is often used as a baseline. Besides, model interpretability
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is important when working with government organizations
or financial companies, where black box models are not
seen favorably. Here we present the framework of Federated
Forest, as illustrated in Figure 2.

The master randomly selects samples and features from
the entire distribution, then sends them to each correspond-
ing client. The clients calculate the impurity improvement
p for each local feature, then encrypt the local maximum
p and send it to the master. The master will decrypt the
received local maximum impurity improvements, select the
best split feature corresponding to the global maximum
impurity improvement, and notify the specific client. The
client who has the best split feature will split the samples
for the left and right subtrees. Then the split sample IDs are
sent to the master for distribution. The above operations are
recursively applied until stopped. Each tree Ti only keeps
the tree structure but not all details of the tree nodes, except
when the split feature is contributed locally. Details of the
algorithms are given in the following subsections.

4.2 Model Building

4.2.1 Algorithm.
In our work, each tree is built by all parties working together
and the tree structure is stored on the master node and every
client. However, each tree only stores the split information
with respect to its own features. We first present the client-
side Federated Forest algorithm in Algorithm 1, and in
Algorithm 2 we described how the master coordinates the
modeling process.

Following the bagging paradigm, the master node first
randomly selects a subset of features and samples from the
entire data. Then the master will notify each client of the
selected features and sample IDs privately. For the selected
features, the master will notify each client privately. For
example, if ten features are chosen by the master and client
1 only possesses three of them, then client 1 will only know
these three features were selected. It will never know how
many features were chosen globally, not to mention what
the features were. During the tree construction, the pre-
pruning conditions are frequently checked. If the conditions
are satisfied, the clients and master will create leaf nodes
accordingly.

If the termination condition is not triggered, all clients
enter the splitting state, and the best split feature of the
current tree node will be selected by comparing the impurity
improvements. First, each client i finds the local optimal
split feature f∗

i . Then the master collects all local optimal
features and corresponding impurity improvements, allow-
ing the global best feature to be found. Second, the master
notifies the client who provided the global best feature. The
corresponding client will split the samples and send the
data partition results (sample IDs that fall into left and right
subtrees) to the master for distribution. For the current tree
node, only the client that provides the best split feature will
save the details of this split. The other clients are only aware
that the selected feature is not contributed by themselves.
The split information such as threshold and split feature are
also unknown to them. Last, the subtrees are recursively
created and the current tree node is returned. In modeling,
if the child trees nodes are created successfully, the parent

ALGORITHM 1: Federated Forest – Client
Input : Data set Di on client i;

Local features Fi = ∅ or Fi = {fA, fB , · · · };
Encrypted label y;

Output: Partial Federated Forest Model on Client i
1 while tree build is True do
2 Receive F ′

i ⊂ Fi and D′

i ⊂ Di for current tree
building;

3 Function TreeBuild (D′

i, F
′

i , y)
4 Create empty tree node;
5 if the pre-pruning condition is satisfied then
6 Mark current node as leaf node;
7 /* For classification problems */
8 Assign leaf label by voting;
9 /* For regression problems */

10 Assign leaf label by averaging;
11 return leaf node;
12 end
13 p, f∗ ← −∞, None;
14 if F ′

i 6= ∅ then
15 Compute impurity improvement p for any

f ∈ F ′

i and find local maximum pi;
16 Record local best split feature f∗ and split

threshold;
17 end
18 Send encrypted pi to master;
19 if receive the split message from master then
20 /* Global best split feature is from itself */
21 is selected← True;
22 Split samples and send sample indices of

left and right subtrees to master;
23 else
24 Receive sample indices of left and right

subtrees;
25 end
26 left subtree← TreeBuild (D′

i left, F
′

i ,
yleft);

27 right subtree← TreeBuild (D′

i right, F
′

i ,
yright);

28 if is selected is True then
29 Save f∗ and split threshold to tree node;
30 end
31 Save subtrees to tree node;
32 return tree node;
33 end
34 Append current tree to forest;
35 end
36 return Partial Federated Forest Model on Client i;

node doesn’t need to save the sample IDs for the subtrees.
Otherwise, if the connection is down, the modeling can be
easily recovered from the breakpoint.

4.2.2 Model Storage.
A tree predictive model is composed of two parts, tree struc-
ture and split information such as feature and threshold
used for each split. Since the forest is built with all clients
working together, the structure of each tree on every client
is the same. However, for a given tree node, the client may
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ALGORITHM 2: Federated Forest – Master
Input : Indices of D;

Encoded features F = F1 ∪ F2 ∪ · · · ∪ FM ;
Encrypted label y;

Output: Complete Federated Forest Model
1 /*Build trees for forest recurrently*/
2 while tree build is True do
3 Broadcast randomly selected samples D′

;
4 Randomly select features F ′

i from Fi and send to
client i;

5 Function TreeBuild (D′
, F ′

, y)
6 Create empty tree node;
7 if the pre-pruning condition is satisfied then
8 Mark current node as leaf node;
9 /* For classification problems */

10 Assign leaf label by voting;
11 /* For regression problems */
12 Assign leaf label by averaging;
13 return leaf node;
14 end
15 Receive encrypted {p}Mi=1 and related

information from all clients;
16 Take j = argmax({p}Mi=1) and notify client j;
17 Receive split indices from client j and

broadcast;
18 left subtree← TreeBuild (D′

left,F
′
, yleft);

19 right subtree← TreeBuild

(D′

right,F
′
, yright);

20 Save subtrees and split info to tree node;
21 return tree node;
22 end
23 Append current tree to forest;
24 end
25 return Complete Federated Forest Model;

or may not store the detailed information. Only the master
server can optionally store the complete model. For each tree
node, the client will store the corresponding split threshold
only if it provided the split feature. If not, the client will
store nothing at the current node but only keep the node
structure. We denoted the complete tree nodes as T , the one
saved on the master, and denoted the tree nodes without full
details stored by ith client as Ti. Since the tree structure is
consistent, we consider Ti ⊂ T , and T1 ∩T2 ∩ · · · ∩TM = L,
where L is the leaf node sets. The complete tree T is the
union of all partial trees, that T = T1 ∪ T2 ∪ · · · ∪ TM .

Let’s assume there are two clients and one master, and
the complete tree model T is shown in Figure 3a. In Figure
3b, the left graph is the visualization of tree model T1 on
client 1. Client 1 owns the selected feature Age. Therefore
it stores the split feature and threshold on node 2. In the
meantime, it knows nothing of node 1 but only stores the
structure. Right graph shows the tree model T2 on client 2.
Client 2 knows nothing of node 2, but feature Profession is
known. Then the details related to Profession are saved on
Node 1 of T2.

4.3 Model Prediction
Under the vertical federated setting [12], the classical ap-
proach of prediction involves multiple rounds of commu-
nication between the master and clients, even for only one
sample. When the number of trees, maximum tree depth
and sample size are large, the communication requirements
for predicting will become a serious burden. To address this
problem, we designed a novel prediction method that takes
advantage of our distributed model storage strategy. Our
method only needs one round of collective communication
for each tree and even for the overall forest. We first present
the prediction algorithm of the client side in Algorithm 3,
and in Algorithm 4, we described how the master server
coordinates each client to achieve the final predictions.

ALGORITHM 3: Federated Forest Prediction –
Client

Input : Partial federated forest model saved on ith
client;
Encoded features Fi on ith client;
Test set Dtest

i on ith client;
Output: Samples IDs Sl

i of leaf l on Ti, l ∈ L
1 while TreePrediction is True do
2 Function TreePredict (Ti, Dtest

i , Fi)
3 if current tree node is leaf node then
4 Return sample IDs Sl

i and leaf label;
5 else
6 if Ti keeps the split info of current node then
7 Split samples into Dtest

i left and Dtest
i right;

8 left subtree← TreePredict (Ti left,
Fi, Dtest

i left);
9 right subtree← TreePredict

(Ti right, Fi, Dtest
i right);

10 else
11 left subtree← TreePredict (Ti left,

Fi, Dtest
i );

12 right subtree← TreePredict
(Ti right, Fi, Dtest

i );
13 end
14 Return left and right subtrees;
15 end
16 Send Si = {S1

i , S
2
i , · · · , Sl

i, · · · } to master;
17 end
18 end
19 return;

First, each client uses the locally stored model to predict
samples. For the tree Ti on ith client, each sample enters
Ti from the root node and finally falls into one or several
leaf nodes through the binary tree. When the sample travels
through each node, if the model stores the split information
at this node, then this sample is determined to enter the left
or right subtree by checking the split threshold. If the model
does not have split information at this node, the sample
simultaneously enters both left and right subtrees.

Again, as shown in Figure 3b, if sample h arrives at node
1 on client 1, it will fall into node 2 and leaf 3 simultaneously
because the current node has no split information. For left
subtree, sample h arrives at node 2. Assume h[‘Age’] is 40,
then it will fall into leaf 2 since bigger than the threshold.
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(a) Complete Tree Model on Master (b) Partial Tree Models on Clients

Fig. 3. Tree Models on Master and Clients

ALGORITHM 4: Federated Forest Prediction –
Master

Input : Sample IDs S of test set Dtest

Output: Prediction of Federated Forest
1 while TreePrediction is True do
2 Gather {S1, S2, · · · , Si, · · · };
3 Obtain {S1, S2, · · · , Sl, · · · }, where

Sl = Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M ;

4 Return label of leaf l for samples in Sl, l ∈ L;
5 end
6 /* For classification problems */
7 Calculate forest predictions by voting on the results

of trees;
8 /* For regression problems */
9 Calculate forest predictions by averaging the results

of trees;
10 return Final Predictions;

Ultimately, sample h will fall into leaf 2 and 3 on client 1. On
client 2, assume h[‘Profession’] = ‘Blue Collar’, then h falls
into leaf 3.

Secondly, the path determination of the tree node is
performed recursively until each sample falls into one or
several leaf nodes. When this process is finished, each leaf
node of the tree Ti on client i will keep a batch of samples.
We use Sl

i to represent the samples that fall into the leaf
node l of the tree model Ti, where l ∈ L. L is the set of leaf
nodes of the tree Ti. And the sample IDs of leaf node l in
the entire binary tree model T is denoted as Sl.

Thirdly, for each leaf l ∈ L, the master will take the
intersection on {Sl

i}Mi=1, and the result will be Sl. Then the
sample sets Sl owned by each leaf node on complete tree T
are already associated with final predictions. Here we gave
a formal proposition on our new prediction method so it can
be mathematically defined:

Proposition 1. For samples S fall into one or multiple leaves on
tree Ti, then for any leaf l of the complete tree T , the sample IDs
Sl in leaf l can be obtained by taking intersection of {Sl

i}Mi=1, that
Sl = Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M .

For the prediction process, samples S will go through
the client tree Ti and fall into one or multiple leaves. For
any leaf l of the complete tree T , the sample IDs Sl in leaf l
can be obtained by taking intersection of {Sl

i}Mi=1, that Sl =

Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M . The formal proof for this proposition is

given at the end of this subsection.
After obtaining the label values for each sample on

all trees, we can easily achieve final predictions. In this
approach, we only need one round of communication for
each tree, or even only one round for the entire forest.

Continue on the example given above, we can find by
taking intersection, sample h will finally belong to leaf 3.

Proof. Proof of the Proposition 1.
In order to prove Sl = Sl

1∩Sl
2∩· · ·∩Sl

M , we will prove:

• Sl ⊆ Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M

• Sl ⊇ Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M

Proof of Sl ⊆ Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M :

For any sample h in the leaf l of the complete tree T ,
h ∈ Sl. w∗ denotes its decision making path from root
to leaf node. For model Ti on each client i, if the model
stores split information at the current node, it is determined
according to the threshold whether this sample enters the
left or right subtree. If the current model does not store
split information at this node, the sample enters the left
and right subtrees simultaneously. Therefore for sample h,
its decision making path w∗ on the complete tree T must
be a subset of its decision making path Wi on any client i.
Then we have w∗ ⊆ Wi, 1 ≤ i ≤ M , which is equivalent to
h ∈ Sl

i, 1 ≤ i ≤ M . Because of this we can safely say that
h ∈ Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M for any h in Sl. Then we can prove
that Sl ⊆ Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M .
Proof of Sl ⊇ Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M :
Assume that sample h doesn’t belong to leaf node l but

belongs to g in complete model T , which is h /∈ Sl and
h ∈ Sg . Besides, we assume h ∈ Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M .
=⇒ h ∈ Sg

1 ∩S
g
2 ∩· · ·∩S

g
M , obtained by the above proof.

=⇒ h ∈ (Sg
1 ∩ Sg

2 ∩ · · · ∩ Sg
M ) ∩ (Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M )
=⇒ h ∈ (Sg

1 ∩ Sl
1) ∩ (Sg

2 ∩ Sl
2) ∩ · · · ∩ (Sg

M ∩ Sl
M )

That is to say, sample h will fall into the leaf node g and
l at the same time in every model stored on the client.

∵ In the same binary tree structure, the path from a child
node to the root node is fixed and unique.

Under the complete tree structure, the path set of the leaf
node g and l up to the root node is wl ∪wj . And the lowest
common ancestor node exists and is uniquely set to O.

So (wl∪wj) ⊆Wi =⇒ (wl∪wj) ∈ (W1∩W2∩· · ·∩WM )
So no platform stores the information of the node O.
=⇒ T 6= T1 ∪ T2 ∪ · · · ∪ TM
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This contradicts to T = T1 ∪ T2 ∪ · · · ∪ TM .
Therefore the hypothesis doesn’t hold.
=⇒ h /∈ Sl =⇒ h /∈ Sl

1 ∩ Sl
2 ∩ · · · ∩ Sl

M

=⇒ Sl ⊇ Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M

In summary, we can prove Sl = Sl
1 ∩ Sl

2 ∩ · · · ∩ Sl
M .

4.4 Privacy Protection
In our work, data privacy protection is tightly associated
with how the federated forest model is designed.

Here we have categorized our efforts on the privacy
protection into five parts:

Identities. In real world tasks, we often face situations
where IDs of samples are tied to persons’ real identities.
Because of this, we have to encrypt the identities before
the ID alignment. An example approach could be like the
following: First, all clients use an agreed hash method to
transform the sample IDs and generate new hashed IDs.
Then Message-Digest Algorithm 5 (MD5) can be applied to
the hashed IDs and generate irreversibly encrypted IDs.

Labels. For classification problems, even labels are en-
coded, we could still guess the true values, especially for
binary classification. For regression problems, even though
labels can be encrypted with homomorphic encryption, it
will be extremely time-consuming for modeling. In practical
tasks, there will be a trade-off between security protection
and computational efficiency.

Features. On each client, local features were encoded
before given to the master for global feature sampling. So
the master will not know the real meaning of features.

Communication. Encryption methods such as RSA and
AES can be applied to secure everything (model interme-
diate values, sample IDs, e.t.c.) communicated during the
training and prediction.

Model Storage. The entire model was distributed across
all clients. For each node, the client would store the cor-
responding split information only if the split feature is on
the local machine. If not, it only stored the structure of
the current node. Clients knew nothing about each other
including whose features were selected, at which tree nodes
and the thresholds. Master can optionally keep a copy of the
entire model, if the master server is deployed at supervision
organizations and also plays the role of auditor.

4.5 Communication Complexity Analysis
Here we give a brief analysis of communication complexity.
There are mainly three types of communication during the
training, where M is the number of regional domains:

• Send and receive. Master sends randomly selected
features to each client in every turn for tree building
and the client who saves the global optimal feature
sends the sample split indices of this feature to
master when building the node. The communication
complexity is O(1).

• Broadcast. Master broadcasts sample indices for
each tree node construction. The communication
complexity is O(M).

• Gather. Master gathers and compares the impurity
improvement of features at every turn for node

building. It also gathers sample sets of all leaves on
each tree stored by clients in the prediction process.
The communication complexity is O(M).

Since the maximum depth is k, in a tree, there are at most
2k−1 − 1 intermediate nodes and 2k−1 leaf nodes. Take the
process of building a tree, for example, the communication
complexity of the whole system in the training phase is
O(2k(M + 1)). For the prediction phase, if not optimized,
the communication complexity is O(2k−1M), otherwise, the
optimized communication complexity is O(M).

5 EXPERIMENTAL STUDIES

5.1 Experimental Setup

In this section, we introduce 9 benchmark datasets, includ-
ing one real-world task (target marketing) and 8 public
datasets from UCI [30], [31], [32], [33], as shown in Table
3. The details of the last 8 datasets can be easily accessed
at an open website1, while the target marketing dataset was
obtained from two data sources to collectively model a
user from different views. Among them, one was from
an e-commerce company and contains 84 features (e.g.,
purchasing records and preferences), while the other one
was from a bank with 11 user features (e.g., balance and loan
information). The target is to discriminate whether a user is
a potential customer of a specific service. We have encrypted
the sensitive information before collectively modeling.

In the experiments, our model is implemented with
Python 3.6, Scikit-learn 0.20, Numpy 1.15.4, python-paillier
1.4.1 and mpi4py 3.0.0. We train/evaluate our model on
servers each with 4 CPU cores and Centos 7.0. All the
servers are in the same internet environment and the band-
width is 20m/s. Different sample sizes and feature spaces
were considered, and the accuracy, efficiency and robustness
of our proposed framework were tested for both classi-
fication and regression problems. Notice that we did not
pursue absolute accuracy and instead tested whether the
performance of our methods is at the same level as the non-
federated approach, i.e., lossless. Four main series of experi-
ments were conducted to evaluate our model from different
aspects: experiments with two data providers, experiments
with multiple data providers, validation of convergence and
analysis of prediction efficiency. The details of each test are
given in the following subsections.

5.2 Experiments with Two-Party Scenario

In this part, exposed UCI data sets were vertically and
randomly separated by feature dimension and placed on
two different client servers (M = 2), each containing half
of the feature space from the original data. For the target
marketing, it was also placed on two different client servers,
of which each contained several business domains. The
experiments in this section are summarized as the following:

• Federated Logistic/Linear Regression (F-LR): We
jointly trained logistic/linear regression models,
where data is kept locally and the model is partly
stored in each client.

1. https://archive.ics.uci.edu/ml/datasets.php
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TABLE 2
Data sets

Classification Size Features Classes
target marketing 156198 95(11/84) 2

ionosphere 351 34 2
spambase 4601 57 2

parkinson [31] 756 754 2
kddcup99 4M 42 23
waveform 5000 21 3
gene 801 20531 5

Regression Size Features Range
year prediction 515345 90 1922-2011

Superconduct [33] 21263 81 0.0002-185

• Non-Federated Forest (NonFF): All data were inte-
grated together for Random Forest modeling.

• Random Forest 1 (RF1): Partial data from the 1st

client was used to build a random forest model.
• Random Forest 2 (RF2): Partial data from the 2nd

client was used to build a random forest model.
• Federated Forest (FF): This is our proposed model,

in which two parties jointly learn a random forest.
Data were kept locally and model was partly stored
in each client.

In the following experiments, we used the grid search
to find the best hyperparameters, then we use these pa-
rameters to train the model multiple times, and took the
average as the final results. All experiments follow the same
data sampling strategy to assure consistency, where each
data set is divided into a train/test set with an 80/20 ratio
and the same random seed is used for different methods.
We conducted the experiments on both classification and
regression problems, and present the results of accuracy and
RMSE in Table 3. We found that the performance of RF1 and
RF2 were obviously worse than the NonFF and FF. Both RF1
and RF2 can be considered as modeling with data from one
business domain, and the insufficient feature space resulted
in an imperfect study of global knowledge. We also found
in most tests that the regression models didn’t perform very
well. For the test on target marketing, since direct aggregation
of data between two institutions was not allowed, we only
ran tests for RF1, RF2, F-LR and FF. The results show that
FF performs as expected and better accuracy is achieved by
building models on different domains.

For most of the data sets, NonFF and FF outperformed
the other methods. In our method, we were building each
tree by processing globally on every regional domain, which
was the same as the tree built by aggregating raw data
together. Z-Test2 was applied to verify the lossless of our
method compared with NonFF, of which the null hypothesis
is that the means from two populations are equal at a given
level of significance. For each data set, 40 rounds of tests
on the NonFF and FF were performed and the p-value of
each Z-Test is given in Table 3. If the p-value ≥ 0.05, the
null hypothesis cannot be rejected at the 0.05 level and
there is no significant difference between the outputs of

2. Hypothesis Testing: https://online.stat.psu.edu/stat414/node/290/

NonFF and FF. If 0.01 ≤ p-value < 0.05, the null hypothesis
cannot be rejected at the 0.01 level. And statistically, we
consider there exists a slight but acceptable difference for
this range of p-value. The null hypothesis should be rejected
if p-value < 0.01 with a significant difference between the
means. By examining the p-value of each data set, we can
find that there are six of them proved to have no significant
difference between the results of NonFF and FF, and for the
rest data sets the differences are slight. No null hypotheses
were rejected.

Overall, we can safely confirm that the Federated Forest
is a lossless solution for both classification and regression
problems, which achieves the same performance as the non-
federated random forest.

5.3 Experiments with Multi-Party Scenario
In this part, we ran tests on the parkinson data set to verify
whether the Federated Forest is capable of conjoining more
than two domains effectively and if a reasonable improve-
ment on accuracy could be achieved. We chose parkinson to
run the test since it already contains eight clearly catego-
rized sub-domains. As for tests of training and prediction
efficiency, we duplicated data for ten times. In the tests,
each time we added one domain into the federated model,
and we recorded the accuracy, training and prediction time.
As shown in Figure 4, the accuracy of Federated Forest im-
proved consistently. The training execution time was almost
linearly with respect to the number of domains, which is to
be expected because all features are to be examined in tree
building. For the prediction time, though more domains and
features were added, the difference in execution time was
negligible. The results demonstrate that our new prediction
algorithm is very effective when handling multiple regional
domains.

Fig. 4. Accy. & Exec. Time vs. # of Domains

5.4 Convergence Analysis
In this part, we examined the convergence of the federated
forest and also compared it with the regular random forest,
with the waveform dataset and spambase dataset. For each
test, we have checked the accuracy by modeling from one
tree up to one hundred trees. The maximum tree depth is
set to 6. The results are shown in Figure 5, where the solid
lines represent the results of federated forest and the dash
liens are results of conventional random forest. As observed,
the federated forest can converge by increasing the number
of trees. Although it varies from the convergence pattern
of random forest, it still reaches a stable condition after a
reasonable number of trees. The reason why the federated
forest needs more trees to converge is that, in the federated
settings, each round of bagging on samples and features
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TABLE 3
Classification experiments

Data set RF1 RF2 F-LR NonFF FF p-value
target marketing 0.870 0.848 0.862 - 0.890± 0.014 -

ionosphere 0.864 0.828 0.873 0.908± 0.019 0.896± 0.030 0.211
spambase 0.844 0.831 0.873 0.943± 0.005 0.928± 0.020 0.065

parkinson [31] 0.849 0.849 0.829 0.859± 0.018 0.857± 0.013 0.744
kdd cup 99 0.974 0.965 - 0.995± 0.001 0.995± 0.009 0.012

waveform 0.745 0.743 - 0.826± 0.008 0.822± 0.012 0.029
gene 0.975 0.975 - 0.988± 0.005 0.982± 0.006 0.229

TABLE 4
Regression experiments

Data set RF1 RF2 F-LR NonFF FF p-value
year prediction 10.47 10.72 9.56 9.537± 0.003 9.555± 0.061 0.058

Superconduct [33] 19.74 17.49 17.52 15.369± 0.118 15.411± 0.163 0.186

can have more impact on the performance than in a non-
federated approach. Overall, the convergence is validated.

Fig. 5. Convergence

5.5 Prediction Efficiency
In this part, we compared the efficiency of our new pre-
diction method with the classical prediction approach. We
used target marketing, spambase and waveform data sets as
the examples. We ran all the tests for 20 times and report
the average results, as shown in Figures 6, 7 and 8. The
solid lines with the dot marker represent the results of
the classical prediction method, and the dash lines with x
marker represent our proposed prediction method.

Firstly, we set the maximum tree depth to 4 and changed
the number of estimators from 8 to 32, and the results were
shown in Figure 6. It can be seen that our method produced
a strong improvement in prediction efficiency. Though the
execution time of both methods increased linearly respect
to the number of estimators, the slope varied dramatically
between our method and the classical prediction method.
For the classical method, there are multiple rounds of
communication in each node during prediction. But in our
method, there is only one round of communication for each
tree.

Secondly, we set the number of estimators to 8, and
adjusted the maximum tree depth from 4 to 16. As shown in
Figure 7, our method outperformed the classical prediction
method again. By increasing the maximum tree depth, the

Fig. 6. Prediction Time vs. Number of Estimators

growth rate of prediction time for both methods gradually
slowed down and stabilized. This is because by setting the
maximum depth to a large number, the tree building may
early stop due to pre-pruning and the actual tree depth will
be smaller. In our method, no matter how deep the tree is or
how many leaf nodes are created, communication was only
executed once for each tree.

Fig. 7. Prediction Time vs. Max Depth

Finally, we fixed the number of estimators and maximum
tree depth, and changed the test sample rate from 0.1 to 0.4,
as shown in Figure 8. Because the classical approach has a
strong linear correlation with the sample size, we found that
its results presented a linear growth trend. Meanwhile, the
execution time of our method changed very slowly, which
shows our method is robust to the prediction sample size.

Overall, our new prediction method had been proved to
be highly efficient.
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Fig. 8. Prediction Time vs. Test Sample Size

6 CONCLUSIONS

In this paper, we proposed a novel tree-based machine
learning model, called Federated Forest, which is lossless with
respect to the model accuracy and protects data privacy.
A secure cross-regional machine learning system was de-
veloped based on it, which allows a learning model to be
jointly trained across different clients with the same user
samples but different attribute sets. The raw data on each
client are not exposed and exchanged to other clients during
the modeling. A novel prediction algorithm was proposed
which could largely reduce the communication overhead
and improve the prediction efficiency. Data privacy was
secured by redesigning the tree algorithms, deploying en-
cryption methods and establishing a third-party trusted
server. Raw data will never be directly exchanged, only a
limited amount of intermediate values between each party.
We performed experiments on both real-world and UCI data
sets, showing the superior performance in classification and
regression tasks, and the proposed Federated Forest was
proven to be as accurate as of the non-federated random
forest that requires gathering the data into one place. The
convergence, efficiency and robustness of our proposed
system have also been verified. Overall, the Federated Forest
overcomes the challenges of the data islands problem and
privacy protection in a brand new approach, and it can be
deployed for real-world applications.
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