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Abstract. Discovering real-time reachable areas of a specified location
is of importance for many location-based applications. The real-time
reachable area of a given location changes with different environments.
Existing methods fail to capture real-time traffic conditions instantly.
This paper provides the first attempt to discover real-time reachable ar-
eas with real-time trajectories. To address the data sparsity issue raised
by the limited real-time trajectories, we propose a trajectory connection
technique, which connects sub-trajectories passing the same location.
Specifically, we propose a framework that combines indexing and ma-
chine learning techniques: 1) we propose a set of indexing and query
processing techniques to efficiently find reachable areas with an arbi-
trary number of trajectory connections; 2) we propose to predict the best
number of connections in any location and at any time based on multi-
ple datasets. Extensive experiments and one case study demonstrate the
effectiveness and efficiency of our methods.

1 Introduction

Real-time reachable area discovery aims to find the reachable area from a speci-
fied location within a given time period in real-time conditions. It is very useful
in many urban applications: 1) Location-based recommendation. As depicted in
Fig. 1(a), a user wants to find the restaurants that can be reached from her
current location within 5 minutes; and 2) Vehicle dispatching. As illustrated in
Fig. 1(b), a user calls for a taxi to pick her up in 10 minutes. Taxi companies
would use this function to find the candidate drivers. Traditional methods are
based on the static spatial range query over either Euclidean distance [1] or road
network distance [2, 3], which find the same reachable areas without considering
the highly skewed traffic conditions at different time (e.g., late night vs. rush
hours). Optional methods first estimate the travel time of each road segment [4–
7], then find reachable areas using road network expansion techniques [2, 8].
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Fig. 1. Application Scenarios and Trajectory Connections.

However, these methods ignore the delays of intersections. Besides, they are de-
signed to model the regular traffic conditions, but can hardly capture abnormal
events, such as accidents. With the availability of massive trajectories, [9] takes
advantage of historical trajectories that passed the query location during the re-
quest hour to find the reachable area. However, this approach cannot be applied
directly in a real-time scenario, as it does not consider real-time contexts, such
as weather, traffic conditions, accidents and other events in a city.

An intuitive idea is to use only real-time trajectories (e.g., generated within
the most recent one hour). However, we cannot apply directly the techniques
in [9] to real-time trajectories, due to the data sparsity issue (i.e., the number of
trajectories passing the query location in a short time window is very limited). To
solve this issue, we propose a trajectory connection technique. As illustrated
in Fig. 1(c), if we consider only the trajectories that exactly pass the query
location q, i.e., tr1 and tr3, only B can be reached. Suppose the trajectories
can be connected if they share the same locations, e.g., tr1 and tr2, C is also
in the reachable area. Further, if the trajectories can be connected twice, E can
be reached as well by connecting tr5 to tr4, which significantly improves the
coverage of the reachable area. However, the reliability of discovered reachable
areas may be affected by trajectory connections, as the connected trajectories
are generated by different moving objects, where the time cost of connections
(e.g., waiting time in crossroads) is ignored. To study the effects of trajectory
connections on reliability, we compare the estimated travel time of a path using
different numbers of trajectory connections with the real travel time, as shown
in Fig. 1(d). It shows that, with more connections, the accuracy of estimation
becomes lower. But if we limit the number less than five, the estimation variation
is less than 10%, which guarantees a reasonable reachable area. However, a small
trajectory connection number may cause a coverage problem. As a result, the
number of trajectory connections is a trade-off between reliability and coverage.

An appropriate connection number is determined by the real-time trajecto-
ries. If there are fewer real-time trajectories, a bigger connection number should
be assigned to achieve a good coverage. However, it is hard to determine a good
connection number, as the spatio-temporal distribution of trajectories is skewed
severely. For example, downtown areas contain more taxi activities than sub-
urb areas. Meanwhile, there are usually more taxi activities during rush hours.
Therefore, a dynamic connection number is needed when a query arrives.

There are three main challenges. 1) As each trajectory can be connected at
any location with numerous trajectories, it results in exponential numbers of pos-
sible combinations, which can be prohibitively inefficient. 2) A good connection
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number is determined by the real-time trajectories, which is further affected by
multiple complex factors, e.g. weather conditions, road networks, and land usage
around the request location [10]. 3) there is even no ground truth of reachable
areas in our datasets, which leads to lack of the labels of connection numbers for
model learning. The main contributions of this paper are summarized as follows:

(1) We provide the first attempt to discover real-time reachable areas with
dynamic trajectory connections, and design a framework that combines indexing
with machine learning techniques to solve this problem (Sect. 3).

(2) We design a set of indexing and query processing techniques to prune re-
dundant trajectory connections, which can efficiently answer real-time reachable
area discovery requests with arbitrary connection numbers (Sect. 4).

(3) We propose a method to generate the labels of connection numbers using
historical trajectories, and identify spatio-temporal features to predict a good
connection number in any location and at any time (Sect. 5).

(4) Extensive experiments are conducted using multiple real datasets, verify-
ing the effectiveness and efficiency of our solutions. Readers can experience our
demo system in http://r-area.urban-computing.com/. (Sect. 6)

2 Preliminary
Definition 1 (Road Network) A road network RN is a directed graph G =
(V,E), where V = {v1, v2, ..., vm} is a set of vertices representing the intersec-
tions, and E = {e1, e2, ..., en} is a set of road segments (edges) with directions.
e.vstart and e.vend represent the start vertex and end vertex of edge e respectively.

Definition 2 (Map-Matched Trajectory) A map-matched trajectory tr =<
(e1, t1) → (e2, t2) → ... → (en, tn) > is generated by mapping raw GPS points
onto the corresponding road segments, where ti is the time when the trajectory
enters edge ei. The time cost to traverse ei is Cost(tr.ei) = ti+1 − ti.

For simplicity, in this paper, we represent a map-matched trajectory without
detailed temporal information, i.e., tr =< e1 → e2 → ...→ en >. tr[i...j] denotes
the sub-trajectory of tr that starts from i-th edge to j-th edge in tr.

Definition 3 (Connected Trajectory). A connected trajectory ctr =< tr1[i1...j1]
→ tr2[i2...j2] → ... → trn[in...jn] > consists of a sequence of sub-trajectories,
where the last edge of the previous sub-trajectory shares the same intersection
with the first edge of the next sub-trajectory, i.e., trm[jm].vend = trm+1[im+1].vstart.

The number of sub-trajectories in a connected trajectory ctr is its degree,
denoted by D(ctr). Specifically, there is D(ctr)− 1 connections in ctr.
Problem Definition. Given a real-time trajectory database T generated in the
most recent time δ, a query location q, a time budget t, and external environ-
mental data around q (e.g. POIs, road networks, and meteorological data), we
first predict a reasonable degree constraint k ≥ 1 of q, and then find a set of road
segments as the reachable area RA(T , q, t, k), such that for any ei ∈ RA, there
exists at least one connected trajectory ctr =< q → ...→ ei > that connects ei
from q, satisfying the following two constraints:

(1) Time Constraint. The time cost of ctr is not greater than t:

Cost(ctr) =
∑D(ctr)

m=1
Cost(trm[im, jm]) ≤ t (1)
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Fig. 2. System Framework.

(2) Degree Constraint. The degree of ctr is not greater than k:

D(ctr) ≤ k (2)

The degree constraint k defines the maximum number of sub-trajectories
in a connected trajectory, which provides a trade-off between the coverage and
reliability of reachable areas. To guarantee a high reliability, we set 1 ≤ k ≤ 5
according to Fig. 1(d). Besides, we focus on reachable area discovery in a very
short time ahead, e.g., t ≤ 30 minutes, as it can satisfy most dispatching or
emergency scenarios. We also have δ × k ≥ t, to make the connection feasible.

3 Framework

Figure 2 gives the framework with two major parts, offline learning and online
processing, which generates three data flows:

Preprocessing data flow. This data flow (black solid arrows) takes real-time
GPS updates as input, removes the trajectories with abnormal speed, and maps
the GPS points onto their corresponding road segments. The map-matched tra-
jectories are then stored in a trajectory database for offline learning, and used for
online index building and degree constraint prediction. We adopt the techniques
in [11–14] to process the trajectory data based on our system JUST [15, 16].

Learning data flow. In this flow (red broken arrows), we first generate the
labels of degree constraints, then extract features from various datasets. Finally,
these features are leveraged for training models, with which the best degree
constraint in any location and at any time can be predicted.

Query processing data flow. In this data flow (dotted blue arrows), when a
user request arrives, we first extract the spatio-temporal features in the given
location from multiple data sources, then predict the best degree constraint with
the models trained offline. Finally, the real-time reachable area is calculated by
means of the built indexes and predicted degree constraint.

As we will apply the indexing techniques to degree constraint model learning,
we first introduce the index building and query processing techniques in Sect. 4,
and then detail degree constraint model training and prediction in Sect. 5.
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4 Index Building & Query Processing

In this section, we assume the degree constraint k is already predicted. If we
apply the traditional network expansion based algorithm [2, 8] directly, in each
expansion step, each candidate road segment is associated with a status of two
different dimensions, i.e., time cost tc and degree cost kc, which makes it impos-
sible to select the “best” candidate. Therefore, it is required to build an effective
index and an efficient pruning strategy to discover real-time reachable areas.

4.1 Traj-index

Data Structure. Traj-index builds links between edges and trajectories. Fig-
ure 3(a) gives an example with two parts: 1) Trajectory-Edge (TE) hash uses
trajectory IDs as hash keys, and each value is a list of edge IDs passed by the
trajectory within the most recent δ minutes; 2) Edge-Trajectory (ET) hash is an
inverted index where the keys are edge IDs, and each value is a list of trajectory
IDs passing the edge ordered by arriving time within the most recent δ minutes.
To efficiently expand the search via sub-trajectories, a pointer is maintained to
link the same trajectory-edge combination between the two hash tables.
Construction. Traj-index is updated in a streaming way, where each update is
processed incrementally. The complexity is O(m × n), where m is the number
of new trajectories, and n is the average size of each trajectory. As a result, it is
efficient to handle large-scale trajectory updates in a real-time manner.
Query Processing. With Traj-index, we propose a query processing method
trajectory expansion based on an intuitive idea: 1) traversing all trajectories
passing q, and finding covered road segments; 2) for each qualified road segment,
identifying all possible trajectory connections, and updating new qualified road
segments; and 3) repeating the previous step, until the budget t or k is used up.

To realize the discovery of reachable areas with Traj-index, a TE-tree is
created during the search process. For example, given a trajectory database as
Fig. 3(b), we get a TE-tree shown as Fig. 3(c), where the query location q forms
the root. The TE-tree consists of one type of nodes and two types of links: 1)
TE-node. Each node contains five properties: an identifier n, a trajectory tr,
an edge e, a time cost tc, and a degree cost kc. A TE-node indicates the current
search status (i.e., trajectory tr at edge e), where the time cost tc and degree
cost kc are the corresponding costs traveling from the root. 2) Expansion Link.
This link (denoted as the dotted black arrows) is generated by accessing the TE
hash in Traj-index. The nodes, e.g., ni&nj , along a link belong to the same
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trajectory, with an increasing time cost tc and the same degree cost kc, i.e.,
nj .tr = ni.tr, nj .tc = ni.tc + Cost(nj .e), nj .kc = ni.kc. 3) Connection Link.
This link (denoted as the blue solid arrows) is generated by the connection of
different two sub-trajectories, which can be built efficiently with road networks
and the ET hash. The nodes, e.g., ni&nj , connected by this type of link have
an increasing time cost tc and an increasing degree cost kc, i.e. nj .tr 6= ni.tr,
nj .tc = ni.tc + Cost(nj .e), nj .kc = ni.kc + 1.

Note that TE-tree is constructed during the search process, which cannot
be pre-computed. As we enumerate all possibly connected trajectories for each
candidate edge via the nodes in TE-tree, finding a reachable area of a position
can be reduced to traversing its corresponding TE-tree. An intuitive idea uses
a depth-first approach, until the budget t or k are used up (denoted as TE).
However, there will be many edges being visited redundantly. For example in
Fig. 3(c), n2 and n13 are traversed with the same trajectory tr6 and edge e13.
As shown in Fig. 3(b), there is an illogical path combination: the user first goes
right with tr4 on e8, and then makes a U-turn and goes back to e13. A more
reasonable route should go directly to e13, which is represented as n2 in TE-tree.

To avoid redundant computation, we design a pruning strategy based on
the observation that, illogical routes always start by a TE-node with the same
trajectory and edge of some visited nodes, but with higher time and degree costs
than them, e.g., n13 and n2 in Fig. 3(c). We call this as node domination.

Definition 4 (Node Domination in TE-tree) Given two nodes ni and nj
in TE-tree, if ni.tr = nj .tr, ni.e = nj .e, ni.tc ≤ nj .tc, and ni.kc ≤ nj .kc, then
ni dominates nj, denoted as ni � nj.
Theorem 1 If ni � nj, nj and all the children of nj can be pruned.
Proof. As ni � nj , both nodes have the same trajectory and edge, all possible
connected trajectories from nj (which generate the children nodes of nj in TE-
tree) can also be attached to ni. As a result, all edges covered in nj ’s children are
also covered in ni’s children. Thus, we can safely prune nj and all of its children.

To maximize the pruning ability, it is important to apply a good order to
traverse TE-tree. For example, in Fig. 3(c), n13 and its children can be pruned
only if n2 is visited before n13. As a result, the nodes with smaller tc and kc should
be searched as early as possible. We propose two heuristics: 1) H1: Nodes with
the same trajectory are searched in priority, as it guarantees not to increase the
degree cost; 2) H2: For multiple sub-trajectories connecting to the same node,
we search the trajectory with the lowest time cost first.

The proposed method TE+ (Algorithm 1) with the two heuristics starts from
the root of TE-tree, and performs a k-iteration process, where each iteration has
two steps: 1) Connection, which connects the existing TE-nodes with possible
road segments based on the road network adjacency. Each connection consumes
one degree budget. 2) Expansion, which generates new TE-nodes by expanding
trajectories from the newly added road segments. To ensure H2, we resort to a
priority queue to store all candidate TE-nodes based on their time costs. We also
record all visited TE-nodes with a set. If there exists a visited node dominating
the newly generated node n, we prune n according to Theorem 1.
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Algorithm 1: TE+

Input: Traj-index of T , query location q, time constraint t, degree constraint k
Output: Reachable area RA(T , q, t, k).

1 Initialize a queue ConQueue to record the candidate connection node;
2 Initialize a set V isited to record all visited TE-nodes;
3 Form the root of TE-tree with q, and add it to ConQueue;
4 for i = 1 to k do
5 Init a empty priority queue pq;

// Connection Step

6 Pop all nodes in ConQueue, create new nodes based on the road network
adjacency and Edge-Trajectory Hash, and add the new nodes to pq;

// Expansion Step

7 while pq is not empty do
8 Pop a node nmin from pq, and add it to V isited and ConQueue;
9 Create a new node n along the same trajectory in nmin;

10 if n.tc ≥ t and not (∃n′ ∈ V isited that n′ � n) then
11 Add n to pq;

12 return the edges in V isited as RA;
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4.2 Skip Graph Index

Observation. In essence, TE and TE+ enumerate all possible trajectory con-
nections. However, it is not necessary to keep all trajectories and explore every
possible trajectory connection. For example, as shown in Fig. 4(a), we have four
trajectories in different colors and time costs. We do not need to explore any
trajectory connection with tr4, as any trajectory connection containing tr4 can
be replaced by tr3 with a better time cost. Keeping tr4 here only increases the
computation cost. Furthermore, for each pair of origin and destination (OD), we
only need to keep track of the fastest sub-trajectory. Figure 4(b) gives all of the
fastest trajectories extracted from Fig. 4(a) based on different OD pairs.

Theorem 2 For any edge ei in the real-time reachable area, it can be reached
from the query location by connecting no more than k sub-trajectories, where
each sub-trajectory is the fastest one between its origin and destination.

Proof. Each qualified edge is reachable from q via at least one qualified ctr,
which can be segmented into no more than k sub-trajectories. By connecting
the OD of each sub-trajectory with the fastest sub-trajectory between them,
we can create a new connected trajectory ctr′, where Cost(ctr′) ≤ Cost(ctr)
and D(ctr′) ≤ D(ctr). If D(ctr′) < D(ctr), there at least exists two neighbor
sub-trajectories in ctr′ belonging to the same trajectory.
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Data Structure. With the insight above, we propose Skip Graph index (SG-
index ), which preserves the fastest sub-trajectories connecting every OD pair.
Indeed, SG-index is a weighted directed graph, in which a node (SG-node) is a
road segment on road networks, an edge (SG-link) connecting two SG-nodes ei
and ej represents there is at least one sub-trajectory traveling from ei.vstart to
ej .vend, and the weight of an SG-link is the minimum time cost on it. Figure 4(d)
is the SG-index of the trajectory database demonstrated in Fig. 4(c).
Construction. SG-index is constructed by scanning trajectories. For each tra-
jectory, all of its sub-trajectories are examined to create SG-links. The weight
of an SG-link is assigned as the time cost of the fastest sub-trajectory travers-
ing it. The time complexity of SG-index construction is O(m× n2), where m is
the number of trajectories in T , and n is the average length of each trajectory.
SG-index stores the minimum time cost of sub-trajectories in a time period,
e.g., the most recent 30 minutes, so it cannot be updated incrementally with
new trajectory updates. Instead, it needs to be rebuilt periodically, e.g., every
one minute. We can also deploy a distributed streaming framework, like Flink
of Storm, to reduce the construction time.
Query Processing. We propose SGE-tree (Skip Graph Expansion tree) to find
all k-hop neighbours of q based on SG-index and road networks, where SG-
index provides the minimum time cost information between two edges, and road
networks give the hints of trajectory connections. Figure 5 is the SGE-tree based
on Fig. 4(c), which is organized into k levels with the query location as root.
SGE-tree consists of two types of nodes and two types of links: 1) Connect
Node. This node (marked in grey) is generated based on the neighbour of road
segments, with four properties: an identifier n, an edge e, a time cost tc, and
a level number l. 2) Expand Node. This node (marked in white) is generated
based on the expansion of SG-index. It contains five properties: an identifier n, an
edge e, a time cost tc, a degree cost kc, and a level number l. 3) Road Network
Connection. RN connection (blue solid arrow) connects an expand node to a
connect node, based on the neighbours of road segments. Along this type of link,
the nodes (ni&nj) have the same time cost nj .tc = ni.tc, but an increasing
level number nj .l = ni.l+ 1. 4) SG Expansion. This link (black dotted arrow)
connects a connect node to an expand node, based on the neighbours of SG-nodes
in SG-index. Along this type of link, the nodes (ni&nj) have an increasing time
cost nj .tc = ni.tc + Cost(ni.e → nj .e), and the same level number nj .l = ni.l,
where Cost(ni.e→ nj .e) is the weight from ni.e to nj .e in SG-index.
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Note that the level number l on an expand node is not equivalent to its degree
cost kc. l means the i-th hop neighbours of the root, but multiple hops in SGE-
tree may belong to the same trajectory. For example in Fig. 5, n9.l = 2, as it is
a two hop neighbour from q. However, both of the hops are the sub-trajectories
of the red dotted trajectory in Fig. 4(c), i.e., trred[e1...e1]→ trred[e2...e2], which
makes the degree cost only one. As a result, we know that in SGE-tree, l ≥ kc.
Theorem 3 An SGE-tree with the level number of k covers all qualified edges
ei in reachable area RA(T , q, t, k).

Proof. Suppose edge e is in the reachable area RA, but does not appear in SGE-
tree with a level of k. As e does not appear in SGE-tree with a level of k, it means
that e cannot be reached from q by connecting any k fastest sub-trajectories. In
other words, to reach e, more than k fastest sub-trajectories should be connected.
Thus, it disqualifies e to be reachable, which is contradictory to our assumption.

Therefore, finding a reachable area with k trajectory connections is equivalent
to finding the k-hop neighbors of q in SG-index. A basic idea is to search the
SGE-tree level by level using a breath-first search, as this order guarantees the
trajectory connections with a smaller degree cost is searched first (denoted as
SGE). However, we can observe that there are still redundant computations. For
example in Fig. 5, n9 should not be searched when n5 exists, as they have the
same time cost and edge. We can avoid this situation based on node domination.

Definition 5 (Node Domination in SGE-tree) Given two expand nodes ni
and nj, if ni.e = nj .e, ni.tc ≤ nj .tc, and ni.l ≤ nj .l, then ni dominates nj,
denoted as ni � nj.
Lemma 1 If an expand node nj in an SGE-tree has nj .l > nj .kc, there must
exist an expand node ni in level nj .kc, with ni.kc = ni.l = nj .kc and ni.tc = nj .tc.

Although l is not equivalent to kc, we can still use the domination relation
to prune the disqualified nodes, when applying the breath-first search.

Theorem 4 If there exist two expand nodes ni and nj such that ni � nj , then
nj and all its children can be pruned, when using the breath-first search.

Proof. Suppose ni � nj , then ni.e = nj .e, ni.tc ≤ nj .tc and ni.l ≤ nj .l. There
are two possible cases between ni.kc and nj .kc: 1) ni.kc ≤ nj .kc, in this case, nj
can be pruned, as all the children of nj can be attached to ni; or 2) ni.kc > nj .kc,
in this case, nj .kc 6= nj .l. Otherwise, if nj .kc = nj .l, we will have ni.l ≥ ni.kc >
nj .kc = nj .l, which contradicts to the domination relation ni.l ≤ nj .l. Thus,
nj .kc < nj .l. According to Lemma 1, there must exist a node in level nj .kc that
covers the same trajectory connection. As a result, we can safely remove nj and
all its children from further expansion.

According to Theorem 4, we propose SGE+ (Algorithm 2) to prune all
disqualified expand nodes based on SGE. SGE+ performs a k-iteration process,
where each iteration executes two functions: 1) RNConnection, which creates
connect nodes based on the road network neighbours of expand nodes in the
previous level; and 2) SGExpansion, which identifies qualified expand nodes in
this level based on the links in SG-index and the connect nodes in the previous
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Algorithm 2: SGE+

Input: SG-index of T , query location q, time constraint t, degree constraint k.
Output: Reachable area RA(T , q, t, k).

1 Init a key-value store Edge2MinT to track the min time cost of edges from q;
2 Init two sets Exp and Con to store expand nodes and connect nodes in a level;
3 Form the root of SGE-tree with q, and add it to Exp;
4 for i = 1 to k do

// RNConnect Step

5 Pop all expand nodes in Exp, create new connect nodes based on the road
network neighbours, and add them to Con;

// SGExpansion Step

6 while Con is not empty do
7 Pop a node nc from Con;
8 Create a new expand node ne based on nc and SG-index ;
9 if ne.tc ≤ t and Edge2MinT [ne.e] > ne.tc then

10 Add ne to Exp; Edge2MinT [ne.e] = ne.tc;

11 return the edges in Edge2MinT as RA;

step. We discard the disqualified expand node if either it has a time cost more
than t or its edge has been searched before with a smaller time cost.

It is worth noting that we only leverage the time costs tc and the level
numbers l of expand nodes to perform the pruning process. As a result, in im-
plementation, it is unnecessary to store the degree costs kc in expand nodes.

5 Model Learning & Prediction

The degree constraint k is intangible for users. We cannot assign a fixed k at all
places and all times, as k is affected by various external factors. To this end, we
propose to dynamically predict the k value in any location and at any time.

5.1 Label Generation

One of the challenges to predict k is that, there is no label of reachable areas
in our dataset. As k is a trade-off between coverage and reliability, a bigger k
achieves a higher coverage, but results in a lower reliability. The intuition is to get
a reasonable coverage with the k as small as possible. As a result, we generate the
labels of k using historical trajectories. More specifically, we regard the reachable
area without any trajectory connection based on “future” trajectories as partial
ground truth, and find reachable areas with different k values using “recent”
trajectories. The minimum k that satisfies a coverage threshold is set as the
label. To get labels for a time budget tb using the trajectories in most recent
time δ, three tasks are performed: 1) Trajectory Partition. The historical
trajectories are partitioned by a sliding window of size δ + tb. The trajectories
in a time window are further divided into two sets, T1 and T2, as shown in
Fig. 6(a). 2) Reachable Area Discovery. In each time window, we take each
edge e at the time t as a start location. For each k ∈ {1, 2, ..., 5}, a reachable
area Ek = RA(T1, e, tb, k) with trajectory connections is discovered, using the
techniques introduced in Section 4. Besides, we find the reachable area EGT
starting from e without any trajectory connection as the partial ground truth
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Ek EGT

(b) Degree Constraint Selection 

Ek∩EGT

tt - δ
(a) Trajectory Partition in a Time Window

t + tb

T1 T2

A Time Window

Fig. 6. Illustration of Label Generation.

of the real reachable area, using the technique in [9]. 3) k-Selection. As shown
in Fig. 6(b), for each k ∈ {1, 2, ..., 5}, we calculate the ratio between |Ek ∩EGT |
and |EGT |, where |∗| is the cardinality of a set. We then select the minimum k
as the label kl that makes the ratio greater than η, 0 ≤ η ≤ 1, formally defined
as Equ. (3). It means that Ek covers the most edges in EGT , but k is as small
as possible. To achieve a high reliability, we set η = 0.9 in implementation.

kl = min k, s.t. |Ek ∩ Et| / |Et| ≥ η and k ∈ {1, 2, ..., 5} (3)

5.2 Feature Extraction

We identify five types of features from multiple data sources: 1) Traffic Fea-
tures. For each road segment, we extract two traffic features, i.e., traffic flow
and average speed, from the nearby real-time trajectories. 2) Time Features.
The time of day, day of the week, and holidays are extracted, to capture the
periodicity of traffic conditions. 3) Meteorological Features. We extract the
meteorological features of each query location, such as rainfall, temperature and
weather conditions (e.g., cloudy, sunny and rainy). 4) POI Features. We cal-
culate the POI distribution within 1km of each query location. The POIs are
categorized into food, shopping, company and etc. 5) Road Network Fea-
tures. The structure of road networks affects the traffic conditions. For each
road segment, we extract the features from nearby road networks, including in-
tersection number and the length of each road level (e.g., highway, main road,
side road and so on).

5.3 Model Training

The extracted features are first standardized, and then fed into the-state-of-art
model ST-ResNet [10], as it can capture the spatial dependencies, temporal de-
pendencies, and external factors of the traffic conditions. Although k is discrete,
we regard this problem as a regression instead of a classification, because the
penalties should be different for different predicted k values. For example, if the
label is 2, it is better to predict k as 3 than 5. For each discrete t ∈ [1, 20], we
train a model individually. The model that is closest to the given continuous
time budget is used when predicting.

6 Evaluation

6.1 Datasets & Settings

Datasets. We adopt four real datasets in our experiments: 1) Road Networks.
The road networks of Shanghai, China are extracted from OpenStreetMap with
333,766 vertices and 440,922 road segments. 2) POIs. We extract the POIs of
Shanghai from OpenStreetMap, which contains 1,111,188 records. 3) Meteorol-
ogy. We collect the meteorological data in Shanghai ranging from Dec. 23rd to
Dec. 30th, 2016. The data is updated every hour. 4) Trajectories. We extract
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Fig. 7. Indexing Performance.

the taxi trajectories from Dec. 23rd to Dec. 30th, 2016 in Shanghai. It contains
303,673,097 GPS points of 5,669 taxis, whose average sampling rate is 10 sec-
onds. The trajectories generated in most recent δ minutes to the query time is
used to simulate the real-time trajectory updates.

Comparing Methods. We compare our proposed method (i.e. SGE+) with its
variants (i.e., TE, TE+ and SGE) and two advanced methods: 1) SQMB [9],
which finds reachable areas using historical trajectories; and 2) TTE, which
first estimates the travel time of each road segment [4], then discovers reachable
areas based on network expansion method [2]. We also verify the effectiveness of
ST-ResNet for our problem, comparing with multiple models including GBDT,
RF, SVR and XGBoost.

Experimental Settings. We focus on the efficiency of indexing and query
processing (implemented in C#), and the effectiveness of k value prediction
(implemented in Python). We randomly select 100 edges as query locations and
calculate the average query processing time. 70% of trajectory and meteorology
data are used for k value model training, and the left are used for validation.
All experiments are performed on a 64-bit Windows Server 2012 with octa-core
2.2GHz CPU and 56 GB RAM. If not specified, we set the default real-time
window δ = 60 minutes, time budget t = 15 minutes, and degree constraint
k = 3. Besides, we use 100% available real-time taxi trajectory data by default.

6.2 Indexing Performance

Different real-time windows. Figure 7(a) depicts the indexing time of Traj-
index and SG-index with different real-time windows δ. There are two obser-
vations: 1) with a bigger δ, both Traj-index and SG-index need more time to
build, as we need to process more trajectories; 2) compared with Traj-index,
the indexing time of SG-index increases more significantly with a larger δ, as
more sub-trajectories are examined to update SG-index. Figure 7(b) shows the
memory usage of Traj-index and SG-index with the increasing real-time window
δ. It is clear that more spaces are used for both indexes. Moreover, the space
consumed by SG-index grows exponentially with a larger δ, as longer trajecto-
ries are generated, which creates exponentially more sub-trajectory candidates
to create the links in SG-index.

Different trajectory data sizes. Figure 7(c) presents the construction time
for two indexes, where the dataset contains different numbers of trajectories
randomly sampled from 20% to 100%. It is observed that the indexing time of
both indexes grows linearly with an increasing sample ratio, because for both in-
dexes, they need to scan the dataset for one time. Moreover, SG-index consumes
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Fig. 8. Query Processing Performance.

much more time, as it needs to check all sub-trajectories to create the links. Fig-
ure 7(d) indicates that the memory usage of both indexes increases with more
trajectories. It is interesting to see that the memory growth of SG-index is slower
comparing to different δ, because more trajectories introduce a limited number
of sub-trajectories with distinct OD pairs as the links in SG-index.

We do not compare the indexing performance with SQMB and TTE here,
as SQMB scans all historical trajectories when building indexes (which is time-
consuming), and TTE does not build indexes. Besides, in the next subsection,
we do not compare the query efficiency of TTE, because it is unfair for TTE if
we consider its prediction time, which is costly.

6.3 Query Processing Performance

Different degree constraints. Figure 8(a) shows the query processing time
with different k, from 2 to 5 (k = 1 is not tested, as it does not involve any tra-
jectory connection). With an increasing k, the query processing time of all meth-
ods increases. Moreover, TE+ (or SGE+) is more efficient than TE (or SGE), as
redundant computations are avoided. Furthermore, SGE takes more time than
TE+ when k is large. Because with more combinations of sub-trajectories, prun-
ing the disqualified nodes in TE-tree or SGE-tree is more effective. In fact, TE
is not able to compute the results when k ≥ 4. Similarly, SGE also fails when
k ≥ 5. SQMB is not tested here as it does not involve trajectory connections.

Different time constraints. As depicted in Fig. 8(b), with the growth of t,
the query processing time of all methods increases. It is clear that with a larger
t, more candidate road segments are tested. We can also notice that TE+ (or
SGE+) is much better than TE (or SGE), and SGE+ is the most efficient. It
is interesting to see that the performance of TE+ exceeds SGE when t is large,
as each pruned candidate leads to a longer (i.e., with more t) redundant search
process. SQMB is faster than TE, TE+ and SGE when t is larger, which proves
the big challenges with trajectory connections. However, thanks to the effective
indexing and pruning techniques, SGE+ is much faster than SQMB in all cases.

Different real-time windows. Figure 8(c) indicates that with a larger time
window δ, all methods take more time, as more road segments are included in a
trajectory, leading to a larger TE-tree or SGE-tree. Here we do not test SQMB as
it uses all historical trajectories, which is not affected by the real-time window.

Different trajectory data sizes. Figure 8(d) shows that the query processing
time increases with more trajectories, as more trajectory connection candidates
are tested. TE+ is comparable to SGE, because the pruning techniques based
on node domination play a major factor in improving the querying efficiency.
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6.4 Effectiveness of k Prediction
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Fig. 9. Effectiveness of k Prediction.

Figure 9 shows the average RMSE
(Root Mean Square Error) and MAE
(Mean Absolute Error) of different
models, which indicates that ST-
ResNet is the best model for our prob-
lem, in terms of both RMSE and
MAE. Because ST-ResNet not only
captures the temporal closeness, period, and trend properties of traffic condi-
tions, but also model the spatial dependency among different locations.

6.5 Case Study

(a) 2016/12/23 19:00 (SGE+) (b) 2016/12/30 19:00 (SGE+) (c) 2016/12/30 19:00 (SQMB) (d) 2016/12/30 19:00 (TTE)

Fig. 10. A Case of Concert (t = 5 minutes, δ = 30 minutes).

Figure 10 shows the reachable areas in the Mercedes-Benz Arena, Shanghai at
the same time on two different days using different methods. Although both
days are Friday, the reachable area in Fig. 10(b) is much smaller than that in
Fig. 10(a), because there is a concert in the arena at 19:30, Dec. 30th, 20166.
More than 10,000 fans gathered here, causing a heavy traffic jam. As a result,
our solutions reflect the traffic jam, where the reachable area only covers the
nearby road segments. Comparing to SGE+, SQMB gives the same reachable
area in all days as shown in Fig. 10(c), and TTE gives a reachable area as shown
in Fig. 10(d), thus they can hardly capture the real-time traffic conditions such
as events. Besides, SQMB could miss some reachable road segments if there is
no trajectory that exactly traverses from the query location to them (i.e., the
orange area). However, the trajectory connection techniques proposed by this
paper can mitigate this situation.

7 Related Works

Reachability Query. The conventional reachability query is one of the fun-
damental graph operations, asking if two nodes are connected in a directed
graph [17–23]. These works can be categorized into two main categories: 1) reach-
ability query on static graphs, e.g., [17] introduces a graph reduction method,
while other works [23, 20] propose different labeling methods to reduce the index
size; and 2) reachability query on dynamic graphs, whose edges and vertexes
change over time. For example, [22] proposes different indexes to efficiently han-
dle vertex insertions and deletions. The conventional reachability query problem
is very different from our real-time reachable area discovery task, as their reach-
ability only considers the graph structure. The closest work is [9], which finds

6 http://bit.ly/2y6f3BF
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reachable areas based on massive historical trajectories that passed the query lo-
cation during the request hour. By analyzing the daily statistics of the qualified
trajectories, the reachable area with a certain probability can be identified. How-
ever, this method cannot capture weather, traffic conditions and events, which
is not suitable for real-time reachable area discovery.
Travel Time Estimation. Travel time estimation calculates the time cost on
a given path. [4–7] leverage the readings of loop detectors or trajectories to infer
the time cost on each road segment. Then, the time cost of a path is estimated
by summing up all costs of the road segments along the given path. These works
ignore the dependencies between road segments. To capture the delays of road
intersections/traffic lights and improve the estimation accuracy, [24–26] estimate
the travel time of a path by considering the trajectories passed the entire path,
and [27] proposes an end-to-end deep learning framework to estimate the travel
time. The techniques of travel time estimation cannot be applied directly to
the discovery of real-time reachable areas, as they require the predefinition of a
path, including the origin and destination locations. In the scenario of reachable
area discovery, the destinations and the paths from the query location are not
predefined. As a consequence, directly applying travel time estimation methods
requires to examine all possible destinations and possible paths to them, which
is inefficient and infeasible in a real-time scenario.

8 Conclusion

This paper provides the first attempt to discover real-time reachable areas with
dynamic trajectory connections. A framework that combines indexing techniques
with machine learning is proposed. Our proposed indexing and query processing
methods can efficiently find real-time reachable areas with an arbitrary number
of trajectory connections. We also propose to predict the best connection number
that achieves a good coverage while guarantees reliability. Extensive experiments
and one case study on four real datasets confirm the effectiveness and efficiency
of our proposed methods for the real-time scenarios.
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