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ABSTRACT
City express services are in great demand in recent years. How-
ever, the current city express system is found to be unsatisfactory
for both the service providers and customers. In this paper, we
are the first to systematically study the large-scale dynamic city
express problem. We aim to increase both the effectiveness and
the efficiency of the scheduling algorithm. To improve the effec-
tiveness, we adopt a batch assignment strategy that computes the
pickup-delivery routes for a group of requests received in a short
period rather than dealing with each request individually. To im-
prove the efficiency, we design a two-level priority queue structure
to reduce redundant shortest distance calculation and repeated can-
didate generation. We develop a simulation system and conduct
extensive performance studies in the real road network of Beijing
city. The experimental results demonstrate the high effectiveness
and efficiency of our algorithm.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Spatial databases and GIS; H.4.2 [INFORMATION SYSTEMS
APPLICATIONS]: Types of Systems—Logistics
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1. INTRODUCTION
With the development of logistics industry and the rise of E-

commerce, city express services have become increasingly popular
in recent years [7]. We illustrate how current city express system-
s work in Fig. 1: A city is divided into several regions (e.g., R1

and R2), each of which covers some streets and neighborhoods. A
transit station is built in a region to temporarily store the parcels
received in the region (e.g., ts1 in R1). The received parcels in a
transit station are further organized into groups according to their
destinations. Each group of parcels will be sent to a corresponding
transit station by trucks regularly (e.g., from ts1 to ts2). In each re-
gion, there are a team of couriers delivering parcels to and receiving
parcels from specific locations in the region. When a truck carrying
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parcels arrives at a transit station, each courier will send a portion
of these parcels to their final destinations. Before departing from
the transit station, they will pre-compute the delivery routes (e.g.,
the blue lines in Fig. 1). During the delivery, each courier can re-
ceive pickup requests (e.g., r5, r6 and r7) from a central dispatch
system or directly from end users. A pickup request is associat-
ed with a location and a deadline of pickup time. A courier may
change the originally planned route to fetch the new parcels, or de-
cline the pickup request due to the capacity constraint or schedule
constraint. All the couriers are required to return to their own tran-
sit station by some specific time (so as to fit the schedule of trucks
that travel between transit stations regularly), or when fully loaded.
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Figure 1: Dynamic City Express
Current central dispatch systems usually adopt a first-come, first-

served (FCFS) strategy in which early requests have higher priority
to be assigned. However, using request arrival time as the first pri-
ority may result in inferior scheduling result. For example, if an
early request has a large incurred distance to be served, it will pre-
vent the courier from serving more incoming requests which may
have smaller incurred distance. On the other hand, most existing
solutions for vehicle routing with time window are either based on
the static assumption [1, 6] or only applied to Euclidean space [3,
4]. Thus they cannot be applied to solve the city express problem
with dynamic requests. In this paper, we study the dynamic city
express problem and aim to design a batch assignment solution.
After collecting pickup requests from customers within a short pe-
riod, our solution processes the requests using a shortest incurred
distance first (SIDF) strategy. Then the system sends the updated
schedules to all the couriers and the confirmation or decline mes-
sages to the customers.

Contributions. We make the following contributions in this paper.
First, we are the first to study the dynamic city express problem
which involves the scheduling of multiple couriers to serve pickup
requests and delivery tasks in real time. Second, we propose an
effective batch solution which processes a batch of requests in the



increasing order of their incurred distance to the courier’s planned
route. Third, we further improve the computational efficiency of
our batch solution by designing a two-level priority queue struc-
ture, which can reduce redundant shortest distance computation
and avoid repeated candidate generation. Fourth, we conduct ex-
tensive performance studies in the real Beijing road network and
demonstrate the high effectiveness and efficiency of our solution.

Outline. Section 2 provides the preliminaries, formally defines the
dynamic city express problem, and shows the complexity of the
problem. Section 3 describes our batch solution. Section 4 presents
experimental results on a real city road network. Section 5 con-
cludes the paper.

2. PROBLEM FORMULATION
We model a road network as a directed weighted graph G(V,

E), where V is a set of nodes (road intersections), and E is a set of
edges (road segments). Each edge (u, v) ∈ E is associated with a
positive weight w(u, v) denoting the time to travel along the edge.
Given two nodes u and v in G, we denote the shortest travel time
from u to v as cost(u, v).

Definition 2.1: (Request) Given a road network G(V,E), a re-
quest is denoted as r = (l, d), where l(r) is the location of the
request that lies in the road network G, and d(r) is the deadline to
pick up the parcel in the request. 2

Each courier also has parcels for delivery on board. We use the
same form for a pickup request to represent a delivery task.

Definition 2.2: (Schedule) Let C = {c1, c2, · · · , cn} be the set of
couriers. For a courier ci ∈ C, a schedule for ci, denoted as Si =
(ri,1, ri,2, · · · , ri,mi), is a sequence of unserved tasks, such that if
following the sequence to pick up/deliver the parcels, the courier
can (1) arrive at the location l(ri,j) before the deadline d(ri,j) for
every 1 ≤ j ≤ mi, and (2) return to the transit station after serving
ri,mi within a fixed maximum travel time after setting off. 2

We use l(ri,0) to denote the current location of the courier ci, and
l(ri,mi+1) to denote the location of the transit station that courier
ci will return at the end of his schedule.

Dynamic City Express Problem. Given a set of n couriers, a
set of delivery tasks at different transit stations, and a stream of
pickup requests, the dynamic city express problem aims to update
the schedule of each courier dynamically as new pickup requests
stream in, such that (1) all delivery tasks are satisfied, and (2) the
pickup requests are satisfied as many as possible.

In our problem, the initial schedules and routes for couriers are
pre-computed to satisfy all the delivery tasks, and they may be up-
dated dynamically to satisfy the incoming pickup requests.

The following lemma shows the complexity of the problem when
all requests are given in advance. In the dynamic case, the problem
becomes even more difficult to handle.

Lemma 2.1: Given the set of couriers C and all requests in ad-
vance, the problem to decide whether a certain ratio P of requests
can be satisfied by the couriers is an NP-complete problem. 2

The proof is omitted due to space limit.

3. OUR BATCH ASSIGNMENT SOLUTION
In this section, we describe our proposed algorithm SIDF, which

uses a shortest incurred distance first strategy to assign requests
in a batch. Our method works as follows. Given a set of requests
R = {r1, r2, ..., rm} received within a short time, we first generate
candidate couriers for each request, that is, couriers who can pos-
sibly serve the request. We then calculate the incurred distance of

each request and assign the requests to couriers in ascending order
of their incurred distance. A two-level priority queue structure is
designed to speed up the assignment process. Finally, we update
all the couriers’ schedules by inserting the accepted requests, and
decline those, if any, that cannot be handled by the couriers.

3.1 Candidate Courier Generation
As the first step, we compute the set of candidate couriers to

serve a new request r. A courier ci can possibly arrive at the
location l(r) before the deadline d(r) from his current location,
if cost(l(ri,0), l(r)) ≤ d(r) − tcur holds, where tcur denotes
the current time. However, computing cost(l(ri,0), l(r)) is very
costly. Thus, we define a lower bound of travel time, denoted as
cost(l(ri,0), l(r)), which can be computed with a light cost. With
the travel cost lower bound, we define the candidate set cand(r) for
a request r as:

cand(r) = {ci|cost(l(ri,0), l(r)) ≤ d(r)− tcur}. (1)

To compute cost(l(ri,0), l(r)), we build a Network Voronoi Dia-
gram (NVD) of the road network G, and treat the transit stations
as generators. For each location l in G, we use ts(l) to denote the
generator for the region that l lies in. For each node v ∈ V , we pre-
compute cost(v, ts(v)) and cost(ts(v), v). For any two generators
tsi and tsj , we precompute cost(tsi, tsj). We also precompute the
radius of each generator tsi, denoted as radius(tsi), which is the
maximum cost from tsi to any node in the Voronoi region of tsi.
With the NVD index, given any two locations li and lj in G, the
lower bound of cost(li, lj) can be calculated as:

cost(li, lj) =max{0, cost(ts(li), ts(lj))
− cost(ts(li), li)− cost(lj , ts(lj))}.

(2)

Obviously, cost(li, lj) can be calculated in constant time. Note that
we can update the NVD index periodically to handle the dynamic
update of travel cost in road network.

In order to efficiently identify cand(r), we first compute the set
of candidate Voronoi regions candts(r) as:

candts(r) = {tsj |cost(l(tsj), l(r))−radius(tsj) ≤ d(r)−tcur}.

After computing candts(r), for each tsj ∈ candts(r), we enumer-
ate all couriers ci that lie in the Voronoi region of tsj and add ci
into cand(r) if cost(l(ri,0), l(r)) ≤ d(r)− tcur .

Besides, we maintain a candidate request set for each courier
ci, which is a set of requests that courier ci can reach before their
deadlines. cand(ci) can be considered as an inverse set of cand(r),
thus, for each ci ∈ cand(r), we simply add r into cand(ci).

3.2 Incurred Distance Calculation
For each courier ci ∈ cand(r), we insert request r into the

schedule Si of ci and calculate the incurred distance due to the
insertion. To avoid exponential search space, we do not consider
changing the order of existing tasks in a schedule to accommodate
r. In the schedule Si, we denote any two consecutive requests ri,j
and ri,j+1 as segment j of Si (0 ≤ j ≤ mi). For a segment j
in Si, it is valid w.r.t. request r iff after inserting r between ri,j
and ri,j+1 in Si, the deadlines of all requests in the new Si can be
satisfied. The incurred distance of this insertion is computed as:

∆distj(r, Si) =cost(l(ri,j), l(r)) + cost(l(r), l(ri,j+1))

− cost(l(ri,j), l(ri,j+1)).
(3)

Based on this, we define the minimum incurred distance to serve
a request r as:

∆dist(r) = min
ci∈cand(r);0≤j≤mi; segment j of Si is valid w.r.t. r

∆distj(r, Si).

(4)



According to Eq. 3, calculating the incurred distance ∆distj(r, Si)
involves calculating cost(l(ri,j), l(r)) and cost(l(r), l(ri,j+1)) us-
ing Dijkstra’s algorithm (or its variant A*) [2], which is costly in a
large road network. In order to minimize the number of exact short-
est path computations, we adopt a lazy path computation strategy
which computes the exact incurred distance for a segment in as-
cending order of its lower bound. The rationale is that if the lower
bound for a segment is large, we can prune it without computing
the exact incurred distance. The lower bound of ∆distj(r, Si) is
defined as:

∆distj(r, Si) =max{0, cost(l(ri,j), l(r))
+ cost(l(r), l(ri,j+1))− cost(l(ri,j), l(ri,j+1))},

where cost(l, l′) for any two locations l and l′ can be calculated by
Eq. 2 using the NVD index. A priority queue is used to maintain the
candidate segments and perform the incurred distance computation
in ascending order of the lower bound value.

3.3 Request Assignment and Schedule Update
Given a set of requests R = {r1, r2, ..., rm}, we compute the

incurred distance for each request, and assign them to couriers us-
ing a shortest incurred distance first strategy. We use a priority
queue to maintain the requests, where a request with a smaller in-
curred distance has higher priority. Then we pop out the top request
r from the queue. Suppose the incurred distance of r is given by
∆distj(r, Si), we insert r into segment j of schedule Si. After
the assignment of r, the incurred distance of each unserved request
r′ ∈ cand(ci) needs to be updated due to new spatio-temporal con-
straints on the schedule Si caused by the insertion of r. In the next
round, the top request with the minimum incurred distance will be
popped out from the the queue and assigned similarly. The assign-
ment process terminates when the requests in the priority queue are
assigned as far as possible. The remaining unassigned requests are
declined.

3.4 Efficiency Implementation
To improve the efficiency, we design a two-level priority queue

structure that maintains and reuses intermediate assignments com-
puted in the process. Fig. 2 depicts the two-level priority queue. An
entry takes the form (r, ci, ri,j , ri,j+1,∆distj(r, Si), flag), which
stands for inserting r between ri,j and ri,j+1 with incurred dis-
tance ∆distj(r, Si). flag indicates whether the ∆distj(r, Si) is an
exact value or a lower bound, which can be easily computed from
Eq. 3 with NVD index. At the bottom level, for each courier ci,
we maintain a local priority queue Hi that keeps all the candidate
requests cand(ci) and their incurred distance or lower bound; and
at the top level, we maintain a global priority queue Hg that keeps
the topmost entries popped from each local priority queue. With the
two-level priority queue structure, after a new request rj is assigned
to a courier ci, we only need to update the local priority queue Hi

and the global priority queue incrementally. For other couriers that
also contain rj in their local priority queues, they can discard rj
in a lazy manner. In this way, the total number of shortest distance
computation can be largely reduced.

Analysis. The two-level priority queue structure accelerates the as-
signment process from two aspects: 1) it only computes the exact
incurred distance of an entry when it is popped out from Hg . For
example, we can avoid computing the exact incurred distance of
r2 because the lower bound of the incurred distance of r2 is larg-
er than that of r1 in Fig. 2. In contrast, if not using the two-level
priority queue structure, we have to compute the incurred distance
of all requests before assignment. 2) It uses the information from
all local priority queues to avoid repeated exact distance computa-
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Figure 2: Global Queue and Local Queues

tion. For example, in Fig. 2, the top valid entry of H1 contains a
possible assignment with exact incurred distance w.r.t. c1, and we
can use it for the assignment of r5 after it is pushed into Hg . Note
that using the two-level priority queue does not affect the assign-
ments, that is, requests are still assigned according to the shortest
incurred distance first criterion. But it can substantially improve
the computational efficiency.

4. PERFORMANCE STUDIES
4.1 Experimental Setup
Data set. We perform experiments in a real road network in Beijing
city. We consider a 15km×5km area that lies between northeast-
ern 4th ring road and 5th ring road of Beijing. The road network
contains 8, 840 nodes and 11, 331 edges.
Simulation with Parameter Settings. We develop a simulation
system to simulate the city express service process as follows. We
choose 7 nodes as transit stations by performing the k-medoids al-
gorithm on all the nodes in the road network (k = 7). Then we
build a network Voronoi diagram with the transit stations as centers.
The courier number in a transit station is proportional to the number
of nodes in the corresponding Voronoi region. The default value of
the total number of couriers is 500. We assume that requests are
generated on all nodes in our experiments. Similar to most queuing
systems [5], we consider the arrival of a pickup request on a node
as a Poisson process with intensity λ, which denotes the average
number of pickup requests arriving per hour on the node. The av-
erage intensity λ is 0.6/hr. A total of 10,800 pickup requests are
generated in a simulation for 2 hours. We set the maximum time to
confirm a request to be 15 minutes and the deadline for picking up
a request to be 30 minutes by default.
Measurements. We test both the effectiveness and the efficiency
of our proposed algorithm. All the experimental results are based
on a simulation for 2 hours of the city express process using our
simulation system. For effectiveness testing, we compare the sat-
isfaction ratio SR of different algorithms, which is computed as:

SR =
# accepted pickup requests
# issued pickup requests

We also compare the average incurred distance AID of different
algorithms, which is computed as:

AID =
∑

r is accepted

∆dist(r)/# accepted pickup requests

The average incurred distance AID is used to measure the average
increased cost to serve an accepted pickup request.

For efficiency testing, we compare the average processing time
per request, which is defined as the time spent on computing the
schedules for all requests within the 2 hours divided by the num-
ber of issued requests. We also compare the average number of
accessed nodes to process each request.



Comparison Algorithm. For both effectiveness and efficiency
testing, we compare our algorithm SIDF with a baseline method
called Nearest. Nearest adopts a first-come, first-served strategy
to handle requests, and assigns a request r to its nearest courier ci
that can serve r. If no such courier is found, the request is rejected.
For efficiency testing and comparison, we also implement a basic
version of our algorithm, denoted as SIDF(Basic), which does not
use the two-level priority queue for efficient computation.

4.2 Effectiveness Testing
(Exp-1: Vary n). In this experiment, we vary the number of couri-
ers n from 100 to 800. The experimental results for SR and AID
are shown in Fig. 3 (a) and Fig. 3 (b) respectively. SIDF increases
SR by 30% on average compared to Nearest. Remarkably, SIDF
can satisfy more than 60% of the requests with 400 couriers while
Nearest needs 800 couriers to reach the same SR. In other word-
s, our algorithm can potentially help an express service company
to save substantial operational cost (i.e., 50%) while achieving the
same satisfaction ratio (i.e., SR = 60%). Regarding AID, SIDF has
smaller AID than Nearest under all n values, which demonstrates
that SIDF can effectively reduce the incurred distance for serving
pickup requests by using the shortest incurred distance first strategy
and batch processing mode.
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Figure 3: Vary n (Effectiveness)

(Exp-2: Vary tr). We vary tr , the maximum time to confirm a re-
quest, from 1 to 24 minutes and compare SR and AID for Nearest
and SIDF. The experimental results for SR and AID are shown in
Fig. 4 (a) and Fig. 4 (b) respectively. As Nearest is independent of
tr , both SR and AID remain unchanged for Nearest when we vary
tr . For SR, SIDF is better than Nearest for all tr values. When tr
increases from 1 to 12, SR for SIDF increases. This is because the
batch assignment strategy in SIDF can have a larger room for im-
provement when tr increases. However, when tr further increases,
SR for SIDF starts to decrease. This is because when tr approaches
the deadline for picking up a request (i.e., d(r) = 30 minutes by
default), the time left for couriers to satisfy early arrival requests
becomes short. Therefore, the overall SR decreases when tr in-
creases. For AID, SIDF has a smaller average incurred distance
under all tr values. The AID of SIDF decreases when tr increases
from 1 to 10, but begins to increase when tr is larger than 15. This
is because when tr is too large, SIDF has to reject some requests
that have a small incurred distance with a strict deadline constraint
(i.e., the requests issued at the beginning of tr period).

4.3 Efficiency Testing
(Exp-3: Vary n). We compare the average processing time and av-
erage number of accessed nodes per request by SIDF, SIDF(Basic)
and Nearest. The results for varying n are shown in Fig. 5 (a) and
Fig. 5 (b) respectively. SIDF is six times faster than SIDF(Basic)
on average, which demonstrates the advantage of the two-level pri-
ority queue in reducing the number of exact incurred distance cal-
culation. SIDF can process a request in less than 15ms and thus
is suitable for realtime applications. The results for the number of
accessed nodes follows the same trend as the average processing
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time. Similar results are observed when varying tr and omitted due
to space limit.

5. CONCLUSION
In this paper, we propose a solution to the scheduling problem

in dynamic city express. We also develop a simulation platfor-
m to confirm both the effectiveness and efficiency of our solu-
tion. Our solution increases the satisfaction ratio of pickup re-
quests compared to existing solutions and enjoys high efficiency
as well. Moreover, the developed simulation platform can be used
to estimate the number of couriers a city express company needs to
achieve a certain satisfaction ratio in urban area. For instance, by
estimating the satisfaction ratio under different courier numbers in
the simulation, we can find that at least 7 couriers/km2 (i.e., 500
couriers/75 km2) are needed to keep the satisfaction ratio above
80%, or equivalently, serve 8,640 pickup requests in 2 hours.
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