
TrajFormer: Efficient Trajectory Classification with Transformers
Yuxuan Liang
Kun Ouyang
Yiwei Wang

Xu Liu
National University of
Singapore, Singapore

yuxliang@comp.nus.edu.sg

Hongyang Chen
Zhejiang Lab, Hangzhou

h.chen@ieee.org

Junbo Zhang
Yu Zheng

JD Intelligent Cities
Research & JD iCity, JD
Technology, China

msjunbozhang@outlook
msyuzheng@outlook

Roger Zimmermann
National University of
Singapore, Singapore

rogerz@comp.nus.edu.sg

ABSTRACT
Transformers have been an efficient alternative to recurrent neural
networks in many sequential learning tasks. When adapting trans-
formers to modeling trajectories, we encounter two major issues.
First, being originally designed for languagemodeling, transformers
assume regular intervals between input tokens, which contradicts
the irregularity of trajectories. Second, transformers often suffer
high computational costs, especially for long trajectories. In this pa-
per, we address these challenges by presenting a novel transformer
architecture entitled TrajFormer. Our model first generates contin-
uous point embeddings by jointly considering the input features
and the information of spatio-temporal intervals, and then adopts a
squeeze function to speed up the representation learning. Moreover,
we introduce an auxiliary loss to ease the training of transformers
using the supervision signals provided by all output tokens. Exten-
sive experiments verify that our TrajFormer achieves a preferable
speed-accuracy balance compared to existing approaches.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.

KEYWORDS
Trajectory classification; urban computing; transformer
ACM Reference Format:
Yuxuan Liang, Kun Ouyang, Yiwei Wang, Xu Liu, Hongyang Chen, Junbo
Zhang, Yu Zheng, and Roger Zimmermann. 2022. TrajFormer: Efficient
Trajectory Classification with Transformers. In Proceedings of the 31st ACM
International Conference on Information and Knowledge Management (CIKM
’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3511808.3557481

1 INTRODUCTION
Trajectory classification is one of the fundamental topics in smart
cities. It aims to differentiate between trajectories of different as-
pects, such as motions, activities, and transportation modes. Recur-
rent Neural Networks (RNNs) have long been the dominant models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557481

p1
p2

p3

p5

p6

p7 p8

p4

(b) Data noise

(a) RNN

x1 x2 x3 x4

(b) TrajODE

x1

ODE

x2 x3 x4

x1 x2 x3 x4

(c) Transformer

w1 w2 w3 w4

Regular interval

(a) Standard transformer for texts

+

(b) Our trajectory transformer

Irregular interval

MLP

Transformer (self-attention)

Word EmbeddingPOS

GAP & MLP

Trajectory EmbeddingCLS

Squeezed Transformer

...

w1 w2

...

w4

Regular interval

(a) Standard transformer for texts

+

(b) Our trajectory transformer

Irregular interval

MLP

Word Embed PE Continuous Point Embed

Squeezed Transformer Block

...

CLSCLS

MLP

Transformer Block

Categories SL

p1

p2

p3

p4

p7
p5

p6

Stay point

GPS Point

Transformer Block Squeezed Transformer Block
...

w3

Figure 1: (a) 𝑤𝑖 denotes the 𝑖-th word in a sentence. (b) m:
meter. s: second. SL: subpath labeling.

for trajectory classification [18, 19, 30]. They can easily be applied
to trajectories of arbitrary length, thus being more flexible than clas-
sical methods such as SVM and decision trees. Though successful,
their efficiency is far inferior to other deep learning counterparts
(e.g., CNNs) because of their inherently sequential nature.

Recently, the natural language processing (NLP) community has
witnessed a shift from RNNs to self-attention methods, in partic-
ular, Transformers [27]. Compared with RNNs, transformers not
only enjoy a better parallelization in computation, but also have
achieved new state-of-the-art results across various NLP tasks, such
as text classification. Considering the intrinsic similarities between
natural language and trajectories (e.g., sequential nature, contex-
tual interrelations), one may ask: can we adapt a transformer as an
efficient alternative for trajectory classification?

To further illustrate, Figure 1(a) depicts a sketch of a transformer
for text classification [7]. The input contains word embeddings, po-
sition encoding (PE), and an extra learnable class token (CLS). All
these tokens go through multiple transformer blocks to learn a rep-
resentation of the sentence. Finally, the class token is employed to
perform classification. Here we highlight two key factors that limit
the direct application of transformers to trajectory classification:
• Position encoding: Being originally designed for language model-
ing, a strong assumption of standard transformers is the regular
intervals between words. Since self-attention is permutation-
invariant, PE is employed to encode the discrete order infor-
mation of sentences, e.g., 1st, 2nd and 3rd. However, such an
encoding cannot capture the irregular nature of trajectories – the
variable spatio-temporal intervals between consecutive points,
which have been proven in the literature to be an extremely im-
portant trait of trajectories [18, 34]. For example, two points in a
shorter time period tend to be more related. Failing to capture
this characteristic may result in suboptimal performance.

https://doi.org/10.1145/3511808.3557481
https://doi.org/10.1145/3511808.3557481

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yuxuan Liang et al.

• Scalability of self-attention: As the key component of transform-
ers, self-attention induces quadratic computational costs with
respect to the number of points within the sequence. Such costs
may become unaffordable with the increase of sampling rate, es-
pecially for long trajectories with hundreds or even thousands of
points. Therefore, how to improve the scalability of self-attention
for modeling long trajectories remains an open problem.
To tackle these issues, we present TrajFormer, a novel transformer

architecture for efficient trajectory classification, as shown in Fig-
ure 1(b). Primarily, unlike transformers for NLP, we unify the tasks
of learning point embeddings and capturing positional information
into a single layer called Continuous Point Embedding (CPE). In
CPE, embeddings are dynamically generated and conditioned on
two crucial factors – the spatio-temporal intervals and the local
neighborhood of each input token. Thanks to the locality of CPE, it
can generalize to any input length and implicitly provide absolute
position information to some extent. Moreover, to capture spatio-
temporal dependencies between GPS points, we present a Squeezed
Transformer Block which can significantly reduce the number of
keys and values in attention computations to boost efficiency. By
controlling the squeeze rate, it can achieve a preferable trade-off
between speed and accuracy against standard transformers.

In addition, high-performance transformers generally require a
heavy pre-training step using large corpora, limiting their adoption
to relatively smaller trajectory datasets. Inspired by [13], we further
enhance TrajFormer with an auxiliary training objective to improve
its performance. This new training objective provides additional su-
pervision to the transformers by assigning each subpath (consisting
of several points) with an individual label generated by a machine
annotator. In summary, our contributions lie in three aspects:
• To the best of our knowledge, we are the first to present a
transformer-based approach for efficient trajectory classification.
Our transformer model can not only capture the irregularity of
trajectories, but is also more efficient than standard transformers
by squeezing the key-value space.

• We present a new teacher-forcing strategy for training high-
performance transformers on modeling trajectories.

• We conduct extensive experiments on two mobility datasets to
validate the superiority of our TrajFormer in terms of accuracy
and throughput. Compared to the state-of-the-art RNN, i.e., Tra-
jODE [18], our model can achieve comparable performance while
running 26.2× and 31.1× faster on the two datasets, respectively.

2 RELATEDWORKS
Trajectory Classification
A trajectory is a sequence of points 𝑝1 → · · · → 𝑝𝑛 , where each
point 𝑝𝑖 = (𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖) contains longitude 𝑎𝑖 , latitude 𝑏𝑖 , and a times-
tamp 𝑡𝑖 . Modeling trajectories fosters a wide range of applications
in smart cities [2, 4, 8, 16, 17, 22–24, 32], such as trajectory classifica-
tion. Zheng et al. [35, 36] first manually discovered effective features
(e.g., movement distance, velocities, acceleration) that can reflect the
semantics of a trajectory, and then applied traditional algorithms
(e.g., SVM, decision trees) to detect the transportation modes of
a user’s trajectory. To reduce human efforts in feature extraction,
Wu et al. presented the first RNN scheme for modeling trajectories
[30]. Afterward, a line of studies [19, 34, 38] integrated various

RNN
TimeLSTM

GRU-DSTGRU

STGN

TrajODE TrajFormer

0 100 200 300
60
65
70
75
80
85
90

RNNTimeLSTM
GRU-DSTGRU

STGN

TrajODE TrajFormer

0 100 200 300
60

65

70

75

80

85

50

60

70

80

90

Throughput Throughput

A
cc

. o
n

G
eo

Li
fe

A
cc

. o
n

G
ra

b-
Po

si
si26.2× 31.1×

Pa
ra

m
 (K

)

Figure 2: Accuracy (%) vs. throughput on GeoLife [37] and
Grab-Posisi [11]. Throughput means the number of trajecto-
ries the network can process in a second during inference.

gating mechanisms into RNNs to tackle the irregularity issue. The
recent state-of-the-art [18] enhanced RNNs to be a continuous-time
model with continuous states obeying ordinary differential equa-
tions (ODE) between consecutive points. Despite their success, the
sequential nature of these RNN-based models inevitably precludes
parallelizing training or inference, leading to extremely low effi-
ciency. In this paper, we perform efficient trajectory classification
by taking advantage of the parallelization of transformers.
Transformers & Self-Attention
Self-attention-based architectures, in particular Transformers [27],
have become the de facto most popular models for sequential learn-
ing tasks by virtue of their strong capability of capturing long-range
relations. A transformer block contains a stack of transformer lay-
ers, and each layer is characterized by two parts: multi-head self-
attention (MSA) and a position-wise feed-forward network (FFN).

MSA is the key operation of transformers to learn an alignment
where each token in the sequence learns to gather messages from
other tokens. Let X ∈ R𝑛×𝑑 be the input sequence with length 𝑛

and feature dimension 𝑑 . The operation of one head is defined as:

Xℎ = Softmax
(
𝛼QℎK

⊤
ℎ

)
Vℎ, (1)

where Xℎ ∈ R𝑛×𝑑/𝑁ℎ is the updated features; Qℎ = XW𝑞 , Kℎ =

XW𝑘 and Vℎ = XW𝑣 are linear transformations applied on the tem-
poral dimension of the sequence;W𝑞,W𝑘 ,W𝑣 ∈ R𝑑×𝑑/𝑁ℎ are the
learnable parameters for the query, key and value projections, and
𝑁ℎ is the number of heads; 𝛼 is a scaling factor for magnitude con-
trol. The computational complexity required in Eq. (1) is quadratic
w.r.t the sequence length. When modeling long sequences, some
follow-ups have explored more efficient ways to compute attention
[14, 20, 29]. Although there are several concurrent works [1, 31]
using transformers for trajectory prediction, transformer-based
trajectory classification is still less explored in the community.
Positional Encoding
As MSA is permutation-equivalent, transformers employ positional
encoding (PE) to incorporate the order information of input se-
quences. Generally, PE can be categorized into two groups: absolute
PE and relative PE. Within the former class, PE is complemented to
the MSA inputs, and can either be learnable [7] or fixed with some
functions [27], such as sinusoidal functions of different frequencies.
In contrast, the second group of PE considers the relative distances
between tokens, which can be viewed as a bias added to the atten-
tion weights [25]. However, both groups assume regular intervals
and use discrete values to index the embedding table, which fails
to encode the variable spatio-temporal intervals in trajectories.

TrajFormer: Efficient Trajectory Classification with Transformers CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

3 METHODOLOGY
Figure 3 depicts the overall architecture of the proposed TrajFormer
to identify the mode of a given trajectory. Our model is composed
of three major stages as follows:
• Continuous point embedding: At the first stage, the raw trajec-
tory is fed to the CPE to learn the embeddings of each point,
where 𝑛 is the sequence length. The embedding of each point is
adaptively generated based on its local neighborhood and the
spatio-temporal intervals between tokens.

• Squeezed Transformer Encoder : After CPE, the point embeddings
{x𝑖 }𝑛𝑖=1 are appended with a class token x0, and go through 𝐿

squeezed transformer blocks for learning representations. As its
name implies, this encoder compresses the dimensions of key
K and values V before attention computations (see Figure 3(b)),
thereby significantly reducing the computational overheads.

• Prediction & subpath labeling: At the top of TrajFormer, there are
two types of decoders: head1 performs classification using the
class token and obtains the prediction ŷ𝑐𝑙𝑠 ; the other decoder
head2 takes advantage of all output tokens (in the red box) by as-
signing each subpath an individual label generated by a machine
annotator as additional supervision.

……

Irregular Trajectory

Continuous Point Embedding

x1

Squeezed Transformer Encoder

…

(a) Overall architecture of Trajormer (b) Squeezed Transformer

MSA

Point features

LayerNorm

+

MLP

+L×

LayerNorm

K’ V’Q

…

K V
Squeeze

p1

pi

pn

x2 xi ... xnxcls

Class token

…

Subpath LabellingLabel

… yj ys

head1

Outputs

head2 head2

ycls

> > >y1

>

head2

Figure 3: The framework of TrajFormer.

3.1 Continuous Point Embedding
3.1.1 Module Design. In NLP tasks, one of the most influential
factors is the quality of word embeddings that are normally pre-
trained on a large-scale corpus, such as BERT [7]. Conversely, in
the literature of trajectory modeling [18, 28], the embedding of
each GPS point is jointly trained with the whole network. Here, we
argue that a powerful and efficient point embedding mechanism
should meet the following four requirements:
(1) Being trained in a parallel manner (i.e., no recurrence).
(2) Being able to model arbitrarily long trajectories.
(3) Providing position information (either absolute or relative)

to a certain degree, which is of great importance to many se-
quential tasks [12].

(4) Being aware of the spatio-temporal intervals between a token
and its nearby tokens.

We notice that the convolution-based methods [6, 28] satisfy the
first three demands, while they utilize kernels with regular inter-
vals to aggregate neighbors’ features without considering variable
spatio-temporal intervals. The ODE-based encoding [21] supports
the last three requirements but cannot be parallel. Based on these
findings, can we combine the parallelization provided by convo-
lutions with the continuity of some functions (e.g., integral) for
generating trajectory embeddings?

Here, we give an affirmative answer by extending convolutions to
be continuous in both temporal and spatial domains, which is suffi-
cient to meet all of the above requirements. Before introducing our
method, let us recall the formula of 1D convolutions with discrete
kernels:

Conv(𝑥) = (𝑓 ∗ 𝑝) (𝑥) =
∑︁𝑘

𝑦=−𝑘 𝑓 (𝑦)𝑝 (𝑥 + 𝑦), (2)

where 𝑝 : Z → R represents the input sequence; 𝑓 : F → R
denotes the discrete kernel applied to the sequence, and F =

{−𝑘,−𝑘 + 1, · · · , 𝑘}. Both 𝑓 and 𝑝 are functions defined over the
support domain of finite integer set. By integrating continuity into
Eq. (2), we propose a Continuous Point Embedding (CPE) as:

CPE(𝑥) = (𝑓 ∗ 𝑝) (𝑥) =
∫ 𝑘

−𝑘
𝑓 (𝑦)𝑝 (𝑥 + 𝑦)𝑑𝑦, (3)

where 𝑝 : R → R and 𝑓 : F → R are continuous on their whole
domain, and F ranges from −𝑘 to 𝑘 .

However, the form in Eq. (3) requires the integration to be analyt-
ically tractable. In practice, objects move continuously throughout
a city while their locations can only be updated at discrete times.
To address this issue, we approximate the continuous convolution
by Monte Carlo integration as:

CPE(𝑥) ≈
∑︁

𝑢∈N(𝑥)

1
|N (𝑥) |𝑔

(
Δ𝑡𝑢,𝑥 ,Δ𝑑𝑢,𝑥

)
𝑝 (𝑢) , (4)

whereN(𝑥) is the set of neighbor points within a local window and
the window size is 𝑘 . The continuous function 𝑔 is parameterized
by an MLP that takes the spatio-temporal intervals (time interval
Δ𝑡 and geographic distance Δ𝑑) between the anchor point 𝑥 and the
nearby token 𝑢 as inputs to adaptively generate the corresponding
kernel. Generally, shorter spatio-temporal intervals indicate higher
correlations. To help better understand how CPE works, Figure 4
shows an example of the pipeline.

(a) Convolution with discrete kernels

0.5

1 2 3 4

1 2 3 4

0.2

1

input

output

input

output
0

Anchor

g(Δt,Δd)

Δt -3 -2 0 4 6
-7 -5 0 3 8Δd

kernel

Anchor

ST Intervals

Input
Trajectory

Figure 4: Continuous position embeddings. For each local
window (e.g., the red rectangle with 𝑘 = 5), we first compute
the spatio-temporal (ST) intervals of each point to the an-
chor, and then employ an MLP function 𝑔 to convert them to
convolution kernels. Finally, we apply the dynamic kernels
to the inputs and update the anchor.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yuxuan Liang et al.

Next, we elaborate on how CPE addresses the above four require-
ments, respectively. Firstly, CPE does not leverage any recurrent
structure and can thus be efficiently trained via modern deep learn-
ing tools. Secondly, it is adaptable to sequenceswith arbitrary length
because only the local neighborhoods of a point are involved in
the computations. Thirdly, locality-based operations can implicitly
learn to encode the absolute position information, which has been
verified in [6, 12]. Lastly, our CPE generates dynamic convolution
kernels based on the spatio-temporal intervals between the an-
chor point and its neighbors, thus considering the irregularity of
trajectories in a principle way.

3.1.2 Implementation. As shown in Algorithm 1, our CPE can be
implemented in just a few lines of code (in a PyTorch-like style).
In Line 6-8, we initialize all neural network layers. Following the
trajectory feature extraction method in [18], we first extract 𝑒-
dimensional point features1 for each point and then feed them into
the CPE module. In Line 13-15, we produce the continuous kernels
based on the spatio-temporal interval information. Note that we
also employ the “multi-head” trick for CPE to improve the ability
of representation learning. In Line 16-19, we employ the unfold
operation to obtain the neighbor features of each point and perform
a linear transformation. Finally, we multiply the features by the
derived continuous kernels in Line 20 to obtain the outputs.

Algorithm 1: Implementation of continuous point embed-
dings in a PyTorch-like style.
1 # Variables are illustrated below:

2 # b: batch size, t: sequence length

3 # e: input feature dimension, d: hidden channel number

4 # k: kernel size, h: number of heads

5 # ==================Initialization==================

6 fc1 = nn.Linear(e, d)

7 st_mlp = nn.Sequential(nn.Linear(2, 64), nn.ReLU(),
nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, h))

8 fc2 = nn.Linear(d, d)

9 # =====================Forward======================

10 # Inputs are illustrated below:

11 # X: point features with shape [b, t, e]

12 # Delta: spatio-temporal interval information in each
local window; its shape is [b, t, k, 2]

13 kernel = st_mlp(Delta) # b,t,k,h

14 kernel = kernel.reshape(-1, k, h) # b*t,k,h

15 kernel = kernel.permute(0, 2, 1).unsqueeze(2) #
b*t,h,1,k

16 X = fc1(X).transpose(1, 2).unsqueeze(-1) # b, d, t, 1

17 tmp = nn.functional.unfold(X, (k, 1), 1, ((k-1)//2, 0),
1).reshape(b, d, k, -1) # b, d, k, t

18 tmp = tmp.permute(0, 3, 2, 1).reshape(-1, k, d) # b*t,
k, d

19 v = fc2(tmp).reshape(b*t, k, h, d//h).permute(0, 2, 1,
4) # b*t, h, k, d/h

20 x = (kernel @ v).squeeze().reshape(b, t, d) # b, t, d

21 return x # output features with shape [b, t, d]

1Besides latitude and longitude, we follow a prior study [18] to approximate the
velocity and acceleration of each point, leading to four attributes per point (𝑒 = 4).

3.2 Squeezed Transformer Encoder
3.2.1 Overview. Given the embeddings of all points X ∈ R𝑛×𝑑 , the
complexity of MSA is O(𝑛2𝑑) where 𝑛 is the number of points and
𝑑 is the feature dimension, making it inefficient to accommodate
long trajectories. Thus, we propose a squeezed transformer encoder
to alleviate this issue. As depicted in Figure 3(b), in each squeezed
transformer block, we first normalize the input features and then
generate the queries, keys and values using non-shared projections.
Once the queries, keys and values are ready, we utilize a squeeze
function to reduce the number of keys/values and perform MSA to
learn spatio-temporal dependencies. Finally, the features are passed
to a layer normalization and an MLP for non-linear transformation.

3.2.2 Squeezed Transformer Block. The major difference between
a standard MSA and our Squeezed MSA is the squeeze function
applied before MSA. Assume that the number of keys/values after
reduction is𝑚 in each layer, we expect𝑚 < 𝑛 (or even𝑚 ≪ 𝑛) to
improve the efficiency of MSA. Under this circumstance, the compu-
tational complexity has been reduced to O(𝑚𝑛𝑑), 𝑛

𝑚 times less than
standard MSA. For simplicity, we use a squeeze rate 𝑟 to denote this
percentage of reduction. By controlling 𝑟 , we achieve a trade-off
between the efficiency and accuracy, e.g., a squeezed transformer
with higher 𝑟 runs faster but may degrade the performance.

We give a unified formulation of the squeeze function by in-
troducing a simple yet effective term – assignment matrix. As
depicted in Figure 5, the assignment matrix B ∈ R𝑚×𝑛 describes
how the points in the original trajectory space are aggregated into
the latent space with fewer nodes, where each entry𝑏𝑖 𝑗 ≥ 0 denotes
the likelihood that the 𝑗-th trajectory point belongs to the latent
node 𝑖 . We guarantee B has each row summing to zero and each
non-zero entry in the same row is evenly distributed.

Given the assignment matrix B, the original keys Kℎ ∈ R𝑛×𝑑/𝑁ℎ

and values Vℎ ∈ R𝑛×𝑑/𝑁ℎ , the squeeze function of each head is a
linear projection between the two spaces, which is defined as:

K′
ℎ
= B⊤Kℎ, V′

ℎ
= B⊤Vℎ, (5)

where K′
ℎ
,V′

ℎ
∈ R𝑚×𝑑/𝑁ℎ are the squeezed keys and values, respec-

tively; 𝑁ℎ is the number of heads. After compressing the key-value
space, we perform MSA to capture the spatio-temporal correlations
between the points (in the trajectory space) and latent nodes as:

Xℎ = Softmax
(
𝛼QℎK

′
ℎ
⊤
)
V′
ℎ
, (6)

where Xℎ ∈ R𝑛×𝑑/𝑁ℎ is the updated features and 𝛼 is a scaling
factor for magnitude control.

1
Trajectory Space

2 3
4 5 6 7

1 2 3 4
Latent Space 1 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1/2 1/2

Assignment matrix B

Figure 5: An example to illustrate how the assignmentmatrix
B transforms the input keys and values from the trajectory
space to the latent space. The squeeze rate of this example is
(7 − 4)/7 = 42.9%.

TrajFormer: Efficient Trajectory Classification with Transformers CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

3.2.3 Squeeze Function. The assignment matrix can be either fixed
based on some algorithms or totally learnable, which is flexible
to a variety of trajectory-based applications. We propose several
feasible variants of the squeeze function as follows:
Pooling-based squeeze. 1D average pooling [15], which has been
widely used for shrinking sequences to reduce costs, can be inter-
preted as the simplest variant of a squeeze function. For example,
we can implement a squeeze function with 𝑟 = 2 by using a 1D
average pooling with a kernel size 2 and stride 1. However, such
pooling may aggregate consecutive but distant points into the same
latent node since it does not leverage the interval information.
Interval-based squeeze. To address the limitations of the above
pooling-based method, we propose two methods that consider the
time intervals or spatial distance for compression. Concretely, we
divide the trajectory at the two points with the largest time interval
(or spatial distance) at each iteration, until the squeeze rate is satis-
fied. Figure 6 illustrates an example of how we divide the trajectory
based on the time interval and spatial distance, respectively. It is
worth noting that the assignment matrix can be processed and
saved in the preprocessing phase, thereby inducing no extra time
during training or inference.

Latitude, Longitude, Time

Lat1, Lng1, t1

Lat2, Lng2, t2

Lat8, Lng8, t8

p1:

p2:

…… …… ……

p8:

Trajectory Space

2 3 4 5 6 7

1 2 3 4
Latent Space 1 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1/2 1/2

Assignment matrix B

Time
x x x

(a) Time interval-based squeeze

(b) Spatial distance-based squeeze

x x x (c) Projection-based squeeze

Trajectory Space

Trajectory

Latent space

Trajectory Space

2 3 4 5 6 7

1 2 3 4
Latent Space 1 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1/2 1/2

Assignment matrix B

1

1

Time Trajectory

x x x
x x x

x

x x

x x x

(a) Time interval-based squeeze (b) Spatial distance-based squeeze

3rd 2nd 1st

1st
2nd 3rd

GPS Log

Figure 6: Interval-based squeeze functions. The red “x” cross
means the divided location. 1st, 2nd and 3rd denote the posi-
tion we divide by at the first, second and third iteration.

Projection-based squeeze. We notice that the above squeeze func-
tions are fixed during the training phase. To explore more flexible
compression, we further present a projection-based squeeze func-
tion with weights that can be jointly learned with the backbone
network. Inspired by Linformer [29], we utilize 1D convolutions as a
projection to adaptively generate the assignment matrix B ∈ R𝑚×𝑛

from the input features X ∈ R𝑛×𝑑 as follows:

X𝑚 = Softmax(Conv1D(X)), B = X⊤
𝑚 (7)

where X𝑚 ∈ R𝑛×𝑚 is the intermediate result and Softmax guaran-
tees the sum of each column of X𝑚 equals to one. This solution has
two major benefits. First, it is easy to implement and friendly to par-
allelization due to the use of convolutions. Second, the assignment
matrix is conditioned on the input features in the trajectory space
and can thus consider the latent semantics of points for projection.

3.2.4 Implementation. The assignment matrix varies with different
trajectories. To support parallel mini-batch training, we propose an
effective implementation of squeeze functions to deal with different
trajectories in the same batch. For instance, if a batch contains
two samples (𝑇1 and 𝑇2) with 6 and 10 points, we first compute
the assignment matrix of them with a squeeze rate 𝑟 = 2, leading
to two matrices (B1 and B2) with shape 6×3 and 10×5. We then

pad 𝑇1 to 10 points to allow parallel training. Likewise, we pad B1
to be the same shape as B2. In this way, the first 6 points in 𝑇1
are real points while the last 4 points are padded points, and the
last 2 latent nodes of 𝑇1 are useless. Finally, we mask two types of
relations in attention computations to remove the impact of padded
points/nodes: 1) the real points to the padded latent nodes; 2) the
padded points to all latent nodes.

3.3 Prediction & Subpath labeling
3.3.1 Loss Function. The last step is leveraging the class token for
making classifications. Further, we introduce an auxiliary objective
termed subpath labeling which assigns each subpath (derived from
the interval-based squeeze) with an individual label generated by
a machine annotator. In this way, we can provide additional su-
pervision (i.e., not only the mode of the whole trajectory) to the
models to ease the training, and the student model can generally
outperform the teacher model after training [13]. For example, a car
sometimes stops at the traffic control for a while, which makes this
subpath analogy to walking or riding a bike. If we force our model
to recognize these points as driving, it may cripple the training.
Using a teacher model to assign pseudo labels for these subpaths
can provide more correct supervision to them. Consequently, we
train our model by minimizing the following loss:

L = H(ŷ𝑐𝑙𝑠 , y𝑐𝑙𝑠) + L𝑆𝐿, (8)

where the first term is the cross entropy (denoted asH) between
the prediction ŷ𝑐𝑙𝑠 and ground truth y𝑐𝑙𝑠 ; the second term L𝑆𝐿

represents the subpath labeling loss, which is computed as:

L𝑆𝐿 =
1
𝑠

𝑠∑︁
𝑖=1

H (ŷ𝑖 , y𝑖) , (9)

where y𝑖 is the pseudo label of the 𝑖-th subpath and 𝑠 is the number
of subpaths. Compared to literature [13] that assigns a pseudo label
to each output tokenwithin images, our subpath-level assignment is
preferable since correctly labeling a single point is far more difficult
than a subpath with far more contextual information.

3.3.2 How to Annotate? The machine annotator can be a variety
of models, such as RNNs and transformers. Taking our TrajFormer
as an example, we first train a TrajFormer without subpath labeling,
denoted as the teacher model. Based on this teacher model, we
utilize the re-labeling method [33] to produce pseudo labels for
each subpath of all instances. To be more specific, recall that the
teacher model employs the MLP network head1 (see Figure 3) to
perform classification on the class token ŷ𝑐𝑙𝑠 . Following the idea of
re-labeling, since each output token has the same dimensionality
as the class token, [13] simply utilizes head1 to give a prediction
(i.e., a pseudo label) to all output tokens, and these pseudo labels
will provide additional supervision to the student model to ease the
training. However, the information of one token is usually limited,
making it difficult to label these tokens one by one. Accordingly,
we first employ the interval-based squeeze to aggregate the output
tokens into some subpaths2 which have richer contextual informa-
tion, and then produce pseudo labels to these subpaths via head1.
After labeling all subpaths, we start to train a new TrajFormer as
the student model using the knowledge provided by the teacher.
2Each subpath’s representation is the average of each point that belongs to this subpath.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yuxuan Liang et al.

4 EXPERIMENTS
4.1 Datasets
We evaluate our approach over two public trajectory datasets of
different sizes. We briefly introduce them as follows:
• GeoLife [37]: This GPS trajectory dataset was collected in the
Geolife project by 182 users from 2007 to 2012. There are 17,621
trajectories with a total distance of 1,292,951 km in this dataset.
40% of the users have labeled their trajectories with transporta-
tion modes, such as driving, taking a bus, riding a bike and walk-
ing. We follow [19] to choose the typical four modes (including
walking, bus, bike and driving) for the classification task. How-
ever, we notice that the number of labeled trajectories is very
limited (only around 2,000) compared to the unlabeled trajecto-
ries. To overcome this problem, we split each labeled trajectory
into sub-trajectories using Algorithm 2 (we set 𝑀 = 10). This
partition can be regarded as data augmentation. As a result, we
obtain 15,639 instances ranging from 5 to 10 minutes from the
GeoLife dataset. Each of them possesses 20 to 100 GPS points. Fi-
nally, we split the data into non-overlapping training, validation
and test data by a ratio of 8:1:1.

• Grab-Posisi [11]: Grab-Posisi is a large-scale dataset collected
by Grab3 drivers in two metropolises – Singapore and Jakarta.
The collection dates range from 2019-04-08 to 2019-04-21 with
6,000 trajectories gathered per day. In particular, the trajectories
in Jakarta have been labeled with two modes, i.e., driving a car
or riding a motorcycle. We follow [18] to conduct a binary clas-
sification task over one-week data (2019-04-10 to 2019-04-16).
Algorithm 2 with𝑀 = 30 is utilized to partition the trajectories
into many instances. After data preprocessing, we obtain 319,587
instances, each of which ranges from 5 minutes to 30 minutes
and consists of 20 to 178 points. Similar to GeoLife, we use the
ratio of 8:1:1 to partition the instances.

More details about the datasets can be found in Table 1.

Algorithm 2: Trajectory partition

Input: {𝑇𝑖 }𝑁𝑇
𝑖=1 : trajectories with labels.

𝑁𝑚 : maximum points within a trajectory;
𝑀 : maximum time range of an instance (in minutes).

Output: Instances set S.
1 S = {∅} // Initialize a set for storing instances.
2 for 𝑖 = 1 . . . 𝑁𝑇 do
3 if get_time_range(𝑇𝑖) > 𝑀 then
4 Partition𝑇𝑖 into𝑀-minute segments, denoted by P
5 for 𝑗 = 1 . . . |P | do
6 𝑁𝑝 = get_num_points(P𝑗)
7 if 𝑁𝑝 ≥ 20 and 𝑁𝑝 ≤ 𝑁𝑚 then
8 Add P𝑗 to S
9 else if 𝑁𝑝 > 𝑁𝑚 then
10 Sample 𝑁𝑚 points from P𝑗 , denoted by P′

𝑗

11 Add P′
𝑗
to S

12 end
13 else if get_time_range(𝑇𝑖) > 5 then
14 Add𝑇𝑖 to S
15 end

3Grab is a Singaporean multinational ride-hailing company

4.2 Experimental Settings
4.2.1 Implementation Details. TrajFormer is implemented with Py-
Torch 1.7 and all experiments are conducted on Nvidia Quadro RTX
6000. We train our method via the Adam optimizer. The learning
rate is initially set to 0.005, and reduced by 1/10 every 30 epochs.
The batch size is 128 and 512 over the two datasets, respectively.
The kernel size 𝑘 in CPE is 9, which works well in our experiments.
As the lengths of trajectories in a batch are inconsistent, we pad
them to the maximum length in the same batch. To achieve a better
trade-off between accuracy and efficiency, we tune a series of hy-
perparameters including the number of transformer layers 𝐿, the
hidden dimensionality 𝑑 , the number of heads 𝑁ℎ , and the squeeze
rate 𝑟 . The hyperparameter study will be detailed in Section 4.4.

4.2.2 Baselines. We compare TrajFormer with two classes of base-
lines: 1) traditional methods, i.e., SVM and Random Forest (RF); 2)
RNN-based models: RNN, TimeLSTM [38], GRU-D [3], STGN [34],
STGRU [19], and TrajODE [18]. The baseline settings are identical
to a recent work [18]. We delineate these baselines below:
• SVM andRF: Following previous studies [35, 36], we utilize SVM
or RF to perform classification based on the extracted metadata,
such as the mean and variance of velocity and acceleration.

• RNN: A vanilla RNN model.
• TimeLSTM: It equips LSTM [10] with time gates to model time
intervals, so as to better capture short- and long-term patterns.

• GRU-D: A variant of GRU [5], which proposes a new time gate
to capture irregularity.

• STGN: It enhances LSTM by introducing spatio-temporal gates to
capture spatio-temporal relationships between successive points.

• STGRU: STGRU develops a convolution layer to capture short-
term spatial dependencies and a temporal gate to control the
information flow related to the temporal interval information.

• TrajODE: The state-of-the-art method, which couples the conti-
nuity of Neural ODE and the robustness of latent variables.

4.2.3 Evaluation Metrics. We use accuracy (Acc) and throughput
per second (TPS) to evaluate the effectiveness and efficiency of our
model, respectively. In particular, TPS indicates the average number
of trajectories the network can process in one second during infer-
ence, which is more popular than processing time per trajectory in
evaluating real-world systems. We train each model five times on
both datasets and report their mean performance.

Table 1: Dataset statistics of the two datasets. MBR indicates
minimum bounding rectangle.

Dataset GeoLife Grab-Posisi
instances 12,684 319,587
points 20∼100; Avg: 94 20∼178; Avg: 84
Time range 5∼10 minutes 5∼30 minutes
Date 2007-04-01 2019-04-10
End date 2012-08-31 2019-04-16

Class ratio

Walk: 31.77% Car: 50.01%
Bike: 16.39% Motorcycle: 49.99%
Bus: 31.82% -
Car: 20.02% -

MBR 39.68°N∼40.13°N 5.93°S∼6.84°S
116.09°E∼116.60°E 105.88°E∼107.41°E

TrajFormer: Efficient Trajectory Classification with Transformers CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

4.3 Model Comparison
In this section, we perform model comparison in terms of accuracy
and throughput. For a fair comparison, we follow the baseline
settings of [18] and ensure that each method has similar parameter
sizes. The experimental results are presented in Table 2. The default
settings of TrajFormer are 𝐿 = 2, 𝑑 = 64, 𝑁ℎ = 4, 𝑟 = 2 and the
squeeze function is time interval-based squeeze. We also report a
larger version of our model with 𝐿 = 3, denoted as TrajFormer*.

As the baselines are not teacher-forcing, to be fair, we mainly
compare them with TrajFormer instead of its subpath labeling ver-
sion (TrajFormer-SL). First of all, TrajFormer obtains the highest
accuracy on GeoLife, while achieving 26× higher TPS than the state-
of-the-art method TrajODE. By stackingmore squeezed transformer
blocks, TrajFormer* sets new state-of-the-art accuracy (81.08%) on
Grab-Posisi with up to 248 TPS. These facts demonstrate the prac-
ticality of our model in time-sensitive applications. Compared to
TrajODE which computes the instantaneous rate of change at every
time step, our TrajFormer takes advantage of the parallelization
and jointly learns the spatio-temporal dependencies within all time
steps. Second, TrajFormer clearly outperforms other RNN-based
models on both metrics, e.g., it brings ∼10% gains in accuracy on
both datasets and runs 2× faster than STGRU.

From this table, we can also observe: 1) By using subpath label-
ing, TrajFormer can achieve around 0.5% higher accuracy on both
datasets without any extra costs. 2) The significant improvement
of STGN against RNN reveals the importance of jointly capturing
the spatial and temporal intervals. 3) Traditional methods such
as SVM and RF are not competitive with the deep-learning-based
approaches due to their limited model capacity. 4) FLOPs cannot
reflect the “real” running speed of each method because it ignores
the effects of parallelization. Hence, we use a more reasonable
metric (TPS) to measure the model efficiency in this study. 5) Deep-
learning-based methods outperform the traditional models by a
considerable margin thanks to their preferable model capacity and
admirable ability in representation learning.

Table 2: Model comparison. Param denotes the number of
learnable parameters and FLOPs means floating point oper-
ations per trajectory with 100 points; The magnitudes are
Kilo (103), Mega (103) and % for #Param, FLOPs, and Acc. The
bold and underlined font mean the best and the second best
metrics, respectively.

Method Param FLOPs GeoLife Grab-Posisi
TPS↑ Acc↑ TPS↑ Acc↑

SVM - - - 49.88 - 51.17
RF - - - 56.16 - 55.68
RNN 56 0.32 172 64.30 161 64.16
TimeLSTM 94 0.78 135 66.68 124 65.68
GRU-D 69 0.54 151 71.71 134 68.48
STGN 78 0.62 148 75.60 142 73.17
STGRU 86 0.70 143 73.15 139 70.14
TrajODE 85 2.37 12 85.25 9 80.44
TrajFormer 76 2.18 314 85.45 280 79.76
TrajFormer-SL 76 2.18 314 85.92 280 80.29
TrajFormer* 105 2.50 271 84.90 248 81.08

4.4 Ablation Studies
We have verified the superiority of TrajFormer against various base-
lines on the two real-world mobility datasets. After that, we conduct
a series of ablation studies to evaluate each model component in
the following parts.

4.4.1 Effects of Continuous Position Embedding. To examine the
effectiveness of the proposed continuous position embedding (CPE),
we compare it with several variants that are integrated with various
position encoding methods:
• Base: This variant denotes TrajFormer without CPE, i.e., no
position encoding in this base model.

• Base+APE: We substitute CPE with learnable absolute position
encoding (APE) which is widely used in natural language pro-
cessing [7] and computer vision tasks [9].

• Base+CAPE: We concatenate the information of spatio-temporal
intervals with the input features to consider the absolute position
as well as the continuity of trajectories.

• Base+RPE: In this variant, we replace CPE with the relative
position encoding (RPE) [25] to provide position information. It
can captures the relative relationships between tokens.

• Base+Conv: CPE is replaced by a conditional position encoding
which is implemented by 1D convolutions [6]. Such convolutions
can provide absolute position information to some extent [12].
Table 3 illustrates the comparison results, where we omit the

throughput as this metric is not distinctive in this comparison. Pri-
marily, TrajFormer with CPE can jointly capture the node features
as well as the spatio-temporal intervals, yielding 1∼2% gains on
accuracy against the base model. We also witness a clear accuracy
drop by replacing CPE with APE which only encodes the order
of GPS points. Moreover, a simple concatenation of the spatio-
temporal interval information only brings marginal improvement
(see base vs. base+CAPE), and we have similar observations in base
vs. base+RPE. These findings verify the importance of capturing
variable spatio-temporal intervals as well. In contrast to Base+Conv,
our TrajFormer surpasses it by a large margin on accuracy because
the convolution operation assigns static weights to nearby tokens
while neglecting the important characteristic of trajectories – irreg-
ularity. Lastly, we notice that the APE-based variant cannot even
outperform the base model, which indicates that an unsuitable
position encoding would cripple the model performance.

Table 3: Results of model variants with different types of po-
sition encodings (or point embeddings), where Param means
the number of learnable parameters. Δ denotes the relative
improvement over the base model. The setting of TrajFormer
is identical to that in Section 4.3.

Variant Param GeoLife Grab-Posisi
Acc↑ Δ Acc↑ Δ

Base 59 83.42 0.00 78.59 0.00
Base+APE 65 82.38 -1.04 77.02 -1.57
Base+CAPE 59 83.51 +0.09 78.71 +0.12
Base+RPE 61 83.72 +0.30 78.65 +0.06
Base+Conv 61 83.05 -0.37 79.20 +0.61
TrajFormer 76 85.45 +2.03 79.76 +1.17

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Yuxuan Liang et al.

4.4.2 Effects of Squeezed Transformer Block. As the basic building
block, our squeezed transformer block allows us to efficiently learn
the spatio-temporal dependencies within a trajectory. Here, we
evaluate its effects from various perspectives.

Given a squeeze rate 𝑟 = 2, we first test how the number of trans-
former blocks 𝐿 affects the model performance. Figure 7 depicts the
experimental results, in which we have the following observations.
Firstly, removing the squeezed transformer encoder (i.e., when
𝐿 = 0, we only use CPEs for classification) significantly degrades
the performance, which indicates the effectiveness of transformers
for learning trajectory representations. Secondly, the trend of the
four squeeze functions is similar over both datasets, where 𝐿 = 2
or 𝐿 = 3 mostly obtain the best results on these datasets. Thirdly,
the time-interval-based squeeze consistently achieves the highest
accuracy among these functions, motivating us to utilize it as the
default option. Fourthly, the projection-based squeeze is worse than
the others in most cases, revealing the difficulty in learning the
assignment matrix from scratch. Lastly, using more transformer
layers does not always bring remarkable gains and instead slows
down our model. We thereby choose 𝐿 = 2 as our default setting.

0 1 2 3 4
Number of transformer blocks

0.80

0.82

0.84

0.86

Ac
c.

 o
n

Ge
oL

ife

Pooling-based
Time interval-based
Spatial distance-based
Projection-based

0 1 2 3 4
Number of transformer blocks

0.72

0.74

0.76

0.78

0.80

0.82

Ac
c.

 o
n

Gr
ab

-P
os

isi

Pooling-based
Time interval-based
Spatial distance-based
Projection-based

Figure 7: Effects of the number of transformer blocks 𝐿,
where the colored lines indicate squeezed transformers with
different squeeze functions. Left: results on GeoLife. Right:
results on Grab-Posisi.

After discussing how the number of blocks 𝐿 affects the model
performance, we further study the effects of the hidden dimension-
ality 𝑑 ranging from 16, 32, 64, 128 to 256. As shown in Figure 8, a
very small hidden dimensionality (e.g.,𝑑 = 16) significantly restricts
model capacity, whereas a very large value (such as 𝑑 = 256) may
cause the overfitting problem. We also show that setting 𝑑 = 64
obtains the best or the second best accuracy across all kinds of
squeeze functions.

16 32 64 128 256
Hidden Dimensionality

0.83

0.84

0.85

Ac
c.

 o
n

Ge
oL

ife

Pooling-based
Time interval-based
Spatial distance-based
Projection-based

16 32 64 128 256
Hidden Dimensionality

0.74

0.76

0.78

0.80

Ac
c.

 o
n

Gr
ab

-P
os

isi

Pooling-based
Time interval-based
Spatial distance-based
Projection-based

Figure 8: Effects of the number of hidden units 𝑑 , where the
colored lines mean different squeeze functions. Left: results
on GeoLife. Right: results on Grab-Posisi.

Next, we investigate the trade-off between efficiency and accu-
racy by tuning the squeeze rate 𝑟 ∈ {1, 2, 4, 8}. It can be seen from
Table 4 that the accuracy gradually drops with the growth of 𝑟 ,
since compressing the key-value space inevitably leads to a bit of
information loss. However, such slightly degenerated performance
seems acceptable in many real-world systems. For example, we
prefer using a larger squeeze rate such as 𝑟 = 8 in a time-sensitive
system (38.5% faster than 𝑟 = 1) even though it degrades the perfor-
mance by 0.6%. From Table 4, we can also observe that TrajFormer
with 𝑟 = 2 runs 17.6% faster than 𝑟 = 1 but only decreases the
accuracy by 0.1%∼0.2% on both datasets. This fact reveals the infor-
mation redundancy in the original trajectory space, motivating us
to reduce the key-value space for improving efficiency.

In this paper, we mainly report the results of 𝑟 = 2 (e.g., in Table
2) since it achieves a preferable balance between speed and accuracy.
In particular, when 𝑟 = 2, our model obtains very close accuracy to
the standard transformer (𝑟 = 1), while being 18% faster on GeoLife
where the maximum length of trajectories is 100. For Grab-Posisi
with maximum 178 points in a trajectory, it can run 31% faster. Such
efficiency improvement would further become more valuable in
modeling very long trajectories, e.g., with thousands of points.

Table 4: Effects of 𝑟 in a time-interval-based squeeze.

𝑟 FLOPs GeoLife Grab-Posisi
TPS↑ Acc↑ TPS ↑ Acc↑

1 2.39 267 85.59 214 80.02
2 2.18 314 85.45 280 79.76
4 2.08 340 85.20 296 79.35
8 2.02 356 84.97 304 79.07

4.4.3 Effects of Subpath Labeling. Finally, we compare our subpath
labeling (SL) with two other teacher-forcing schemes below:
• Distillation (DL): This method proposes a new distillation token,
which serves the same purpose as the class token, except that it
aims at reproducing the label estimated by the teacher [26].

• Token Labeling (TL): TL is widely applied in computer vision
tasks, which assigns each token with individual location-specific
supervision generated by a machine annotator [13].
Besides, we denote TrajFormer with no teacher forcing as Base.

The teacher model is a pretrained TrajFormer for all schemes. As
shown in Table 5, we first test TrajFormer with different schemes in
a fully supervised learning setting (see the Fully column). TL, which
leverages the rich information of all output tokens, slightly outper-
forms DL which only utilizes the extra class token as additional
supervision. However, TL is still inferior to SL because correctly
labeling a single point is more complicated than labeling a subpath
with more contextual information.

We also investigate semi-supervised learning via these teacher-
forcing schemes. We randomly remove 90% of the samples from
the training set and set them as unlabeled data. During the training
phase, we produce the pseudo labels for the unlabeled data via the
above teacher schemes, which provides additional supervision to
the model. For the validation and test set, we keep them unchanged.
From Table 5, the improvements of the three methods over Base
(ignoring unlabeled data) verify the advantage of leveraging the
unlabeled data. More importantly, SL significantly surpasses DL and
TL in this setting, e.g., with ∼2% higher accuracy on Grab-Posisi.

TrajFormer: Efficient Trajectory Classification with Transformers CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 5: Accuracy of various teacher-forcing schemes in fully-
supervised (Fully) and semi-supervised (Semi) learning.

Scheme GeoLife Grab-Posisi
Fully Semi Fully Semi

Base 85.45 (+0.00) 80.29 (+0.00) 79.76 (+0.00) 73.95 (+0.00)
Base+DL 85.35 (-0.10) 82.47 (+2.18) 79.81 (+0.05) 75.18 (+1.23)
Base+TL 85.50 (+0.05) 82.76 (+2.47) 79.91 (+0.15) 75.33 (+1.38)
Base+SL 85.92 (+0.47) 83.95 (+3.66) 80.29 (+0.53) 77.48 (+3.53)

5 CONCLUSION AND FUTUREWORK
We have presented a transformer-based architecture for efficient
trajectory classification. Our approach has two major advantages
against standard transformers. First, we propose continuous point
embeddings to capture the irregularity of trajectories. Second, it
speeds up self-attention by compressing the key-value space, re-
sulting in a more efficient way to capture global context. Compared
to the state-of-the-art method, our model achieves comparable per-
formance while running at least 26× faster. In the future, we plan
to explore self-supervised trajectory classification with our model.

ACKNOWLEDGMENTS
We thank the reviewers for their constructive comments. This study
is supported by Singapore Ministry of Education Academic Re-
search Fund Tier 2 under MOE’s official grant number T2EP20221-
0023, National Natural Science Foundation of China (62172034), Bei-
jing Nova Program (Z201100006820053), and key research project
of Zhejiang Lab (No. 2022PI0AC01).

REFERENCES
[1] Zain Ul Abideen, Heli Sun, Zhou Yang, Rana Zeeshan Ahmad, Adnan Iftekhar, and

Amir Ali. 2021. Deep Wide Spatial-Temporal Based Transformer Networks Mod-
eling for the Next Destination According to the Taxi Driver Behavior Prediction.
Applied Sciences 11, 1 (2021), 17.

[2] Xin Cao, Gao Cong, and Christian S Jensen. 2010. Mining significant semantic
locations from GPS data. Proceedings of the VLDB Endowment 3, 1-2 (2010),
1009–1020.

[3] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. 2018. Recurrent neural networks for multivariate time series with missing
values. Scientific reports 8, 1 (2018), 1–12.

[4] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. 2011. Discovering popular
routes from trajectories. In 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 900–911.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[6] Xiangxiang Chu, Zhi Tian, Bo Zhang, XinlongWang, XiaolinWei, Huaxia Xia, and
Chunhua Shen. 2021. Conditional positional encodings for vision transformers.
arXiv preprint arXiv:2102.10882 (2021).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Xin Ding, Lu Chen, Yunjun Gao, Christian S Jensen, and Hujun Bao. 2018. Ul-
TraMan: A unified platform for big trajectory data management and analytics.
Proceedings of the VLDB Endowment 11, 7 (2018), 787–799.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[11] Xiaocheng Huang, Yifang Yin, Simon Lim, Guanfeng Wang, Bo Hu, Jagannadan
Varadarajan, Shaolin Zheng, Ajay Bulusu, and Roger Zimmermann. 2019. Grab-
posisi: An extensive real-life gps trajectory dataset in southeast asia. In Proceed-
ings of the 3rd ACM SIGSPATIAL International Workshop on Prediction of Human

Mobility. 1–10.
[12] Md Amirul Islam, Sen Jia, and Neil DB Bruce. 2020. How much position informa-

tion do convolutional neural networks encode? arXiv preprint arXiv:2001.08248
(2020).

[13] Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Xiaojie Jin, Anran Wang, and
Jiashi Feng. 2021. Token labeling: Training a 85.5% top-1 accuracy vision trans-
former with 56m parameters on imagenet. arXiv preprint arXiv:2104.10858 (2021).

[14] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2019. Reformer: The Efficient
Transformer. In ICLR.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[16] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-
naswamy. 2015. Rank-geofm: A ranking based geographical factorization method
for point of interest recommendation. In SIGIR. 433–442.

[17] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep
representation learning for trajectory similarity computation. In 2018 IEEE 34th
international conference on data engineering (ICDE). IEEE, 617–628.

[18] Yuxuan Liang, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger
Zimmermann. 2021. Modeling Trajectories with Neural Ordinary Differential
Equations. In IJCAI. 1498–1504.

[19] Hongbin Liu, Hao Wu, Weiwei Sun, and Ickjai Lee. 2019. Spatio-temporal GRU
for trajectory classification. In ICDM. IEEE, 1228–1233.

[20] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. 2018. Generating Wikipedia by Summarizing Long
Sequences. In ICLR.

[21] Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. 2020. Learning
to encode position for transformer with continuous dynamical model. In ICML.
6327–6335.

[22] Cheng Long, Raymond Chi-Wing Wong, and HV Jagadish. 2014. Trajectory
simplification: on minimizing the direction-based error. Proceedings of the VLDB
Endowment 8, 1 (2014), 49–60.

[23] Sijie Ruan, Cheng Long, Jie Bao, Chunyang Li, Zisheng Yu, Ruiyuan Li, Yux-
uan Liang, Tianfu He, and Yu Zheng. 2020. Learning to generate maps from
trajectories. In AAAI, Vol. 34. 890–897.

[24] Simonas Šaltenis, Christian S Jensen, Scott T Leutenegger, and Mario A Lopez.
2000. Indexing the positions of continuously moving objects. In SIGMOD. 331–
342.

[25] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-Attention with
Relative Position Representations. In NAACL (Short Papers). 464–468.

[26] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In ICML. 10347–10357.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[28] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When will you
arrive? estimating travel time based on deep neural networks. In AAAI, Vol. 32.

[29] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. 2020. Lin-
former: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

[30] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. 2017. Model-
ing Trajectories with Recurrent Neural Networks. In IJCAI. 3083–3090.

[31] Hao Xue, Flora Salim, Yongli Ren, and Nuria Oliver. 2021. MobTCast: Leveraging
Auxiliary Trajectory Forecasting for Human Mobility Prediction. Advances in
Neural Information Processing Systems 34 (2021).

[32] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.
2013. Time-aware point-of-interest recommendation. In SIGIR. 363–372.

[33] Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyoon Han, Junsuk Choe, and
Sanghyuk Chun. 2021. Re-labeling imagenet: from single to multi-labels, from
global to localized labels. In CVPR. 2340–2350.

[34] Pengpeng Zhao, Haifeng Zhu, Yanchi Liu, Jiajie Xu, Zhixu Li, Fuzhen Zhuang,
Victor S Sheng, and Xiaofang Zhou. 2019. Where to Go Next: A Spatio-Temporal
Gated Network for Next POI Recommendation. In AAAI, Vol. 33. 5877–5884.

[35] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-
standing mobility based on GPS data. In Proceedings of the 10th international
conference on Ubiquitous computing. 312–321.

[36] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning transportation
mode from raw gps data for geographic applications on the web. In WWW.
247–256.

[37] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social
networking service among user, location and trajectory. IEEE Data Eng. Bull. 33,
2 (2010), 32–39.

[38] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng
Cai. 2017. What to do next: modeling user behaviors by time-LSTM. In IJCAI.
3602–3608.

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Continuous Point Embedding
	3.2 Squeezed Transformer Encoder
	3.3 Prediction & Subpath labeling

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Model Comparison
	4.4 Ablation Studies

	5 Conclusion and Future Work
	Acknowledgments
	References

