
Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction

Jiahao Ji1, Jingyuan Wang1,2,3*, Chao Huang4,
Junjie Wu3, Boren Xu1, Zhenhe Wu1, Junbo Zhang5,6, Yu Zheng5,6

1School of Computer Science & Engineering, Beihang University, China
2Peng Cheng Laboratory, China 3School of Economics & Management, Beihang University, China

4Department of Computer Science, Musketeers Foundation Institute of Data Science, University of Hong Kong, China
5JD Intelligent Cities Research, Beijing, China 6JD iCity, JD Technology, Beijing, China

Abstract

Robust prediction of citywide traffic flows at different time
periods plays a crucial role in intelligent transportation sys-
tems. While previous work has made great efforts to model
spatio-temporal correlations, existing methods still suffer
from two key limitations: i) Most models collectively predict
all regions’ flows without accounting for spatial heterogene-
ity, i.e., different regions may have skewed traffic flow distri-
butions. ii) These models fail to capture the temporal hetero-
geneity induced by time-varying traffic patterns, as they typ-
ically model temporal correlations with a shared parameter-
ized space for all time periods. To tackle these challenges, we
propose a novel Spatio-Temporal Self-Supervised Learning
(ST-SSL1) traffic prediction framework which enhances the
traffic pattern representations to be reflective of both spatial
and temporal heterogeneity, with auxiliary self-supervised
learning paradigms. Specifically, our ST-SSL is built over an
integrated module with temporal and spatial convolutions for
encoding the information across space and time. To achieve
the adaptive spatio-temporal self-supervised learning, our ST-
SSL first performs the adaptive augmentation over the traf-
fic flow graph data at both attribute- and structure-levels. On
top of the augmented traffic graph, two SSL auxiliary tasks
are constructed to supplement the main traffic prediction
task with spatial and temporal heterogeneity-aware augmen-
tation. Experiments on four benchmark datasets demonstrate
that ST-SSL consistently outperforms various state-of-the-art
baselines. Since spatio-temporal heterogeneity widely exists
in practical datasets, the proposed framework may also cast
light on other spatial-temporal applications. Model imple-
mentation is available at https://github.com/Echo-Ji/ST-SSL.

1 Introduction
Robust traffic flow prediction across different spatial regions
at different time periods is crucial for advancing intelligent
transportation systems (Zhang et al. 2020). For example, ac-
curate traffic prediction results can not only enable effec-
tive traffic controls in a timely manner, but also mitigate
tragedies caused by the sudden traffic flow spike. In general,
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Figure 1: Illustration of our motivation, i.e., the spatial and
temporal heterogeneity of traffic flow data.

traffic prediction aims to forecast the traffic volume (e.g.,
inflow and outflow of each region at a given time), from
past traffic observations. Recent advances have significantly
boosted the research of traffic flow prediction with vari-
ous deep learning techniques, e.g., convolutional neural net-
works over region grids (Zhang, Zheng, and Qi 2017), graph
neural networks for spatial dependency modeling (Zhang
et al. 2021), and attention mechanism for spatial informa-
tion aggregation (Zheng et al. 2020). Although significant
efforts have been made to improve the traffic flow predic-
tion results, existing models still face two key shortcomings.

The first limitation is the lack of modeling spatial het-
erogeneity exhibited with skewed traffic distributions across
different regions. Taking Fig. 1(a) for example, A and B are
two real-world regions in Beijing with different urban func-
tions, namely the residential area and transportation hub.
We can observe their quite different traffic flow distributions
from Fig. 1(b). However, most existing models ignore such
spatial heterogeneity and are easily biased towards popular
regions with higher traffic volume, which make them insuffi-
cient to learn quality citywide traffic pattern representations.
While some studies attempt to capture the heterogeneous
flow distributions with multiple parameter sets over differ-
ent regions (Pan et al. 2019b; Bai et al. 2020), the involved
large parameter size may lead to the suboptimal issue over
the skewed-distributed traffic data. Worse still, the high com-
putational and memory cost of these methods make them
infeasible to handle large-scale traffic data in practical ur-
ban scenarios. In addition, meta-learning has been used in
recent approaches (Pan et al. 2019a; Ye et al. 2022) to con-



sider the difference of region traffic distributions. However,
the effectiveness of those models largely relies on the col-
lected handcrafted region spatial characteristics, e.g., nearby
points of interest and density of road networks, which limits
the model representation generalization ability.

Furthermore, current traffic prediction methods model the
temporal dynamics with a shared parameter space for all
time periods, which can hardly precisely preserve the tempo-
ral heterogeneity in the latent embedding space. In real-life
scenarios, traffic patterns of different regions vary over time,
e.g., from morning to evening, which results in the temporal
heterogeneity as shown in Fig. 1(c). Nevertheless, the pa-
rameter space differentiation strategy adopted in (Song et al.
2020; Li and Zhu 2021) assumes that the temporal hetero-
geneity is static across the entire time periods, which is not
always held, e.g., evening traffic patterns can be significantly
different for workdays and holidays shown in Fig. 1(c).

To effectively model both spatial and temporal het-
erogeneity, we present a novel Spatio-Temporal Self-
Supervised Learning framework for predicting traffic flow.
To encode spatial-temporal traffic patterns, our ST-SSL is
built over a graph neural network which integrates tempo-
ral and spatial convolutions for information aggregation. To
capture the spatial heterogeneity, we design a spatial self-
supervised learning paradigm to augment the traffic flow
graph at both data-level and structure-level, which is adap-
tive to the heterogeneous region traffic distributions. Then,
the auxiliary self-supervision with a soft clustering paradigm
is introduced to be aware of the diverse spatial patterns
among different regions. To inject the temporal heterogene-
ity into our latent representation space, we empower ST-SSL
to maintain dedicated representations of temporal traffic dy-
namics with temporal self-supervised learning paradigm.
We summarize the key contributions of this work as follows:

• To the best of our knowledge, we are the first to propose a
novel self-supervised learning framework to model spa-
tial and temporal heterogeneity in traffic flow prediction.
This paradigm may shed light on other practical spatio-
temporal applications, such as air quality prediction.

• We propose an adaptive heterogeneity-aware data aug-
mentation scheme over the graph-structured spatial-
temporal graph against the noise perturbation.

• Two self-supervised learning tasks are incorporated to
supplement the main traffic prediction task by enforcing
the model discrimination ability with the awareness of
both spatial and temporal traffic heterogeneity.

• Extensive experiments are conducted on four real-world
public datasets to show the consistent performance supe-
riority achieved by our ST-SSL across various settings.

2 Preliminaries
Definition 1 (Spatial Region). We partition a city into N =
I × J disjoint geographical grids, in which each grid is
considered as a spatial region rn(1 ≤ n ≤ N). We use
V = {r1, . . . , rN} to denote the spatial region set in a city.

Definition 2 (Traffic Flow Graph (TFG)). A traffic flow
graph is defined as G = (V, E ,A,Xt−T :t), where V is the

set of spatial regions (nodes) with the size of |V| = N , and E
is a set of edges connecting two spatially adjacent regions in
V . The adjacent matrix of our traffic flow graph is denoted
as A ∈ RN×N . We represent the citywide traffic inflow and
outflow data over previous T time steps with a traffic tensor
Xt−T :t ∈ RT×N×2 = (Xt−T , . . . ,Xt). The traffic volume
information of all regions V at the t-th time slot is denoted
as Xt ∈ RN×2.
Problem Statement. Given the historical traffic flow graph
G till the current time step, we aim to learn a predictive func-
tion which accurately estimates the traffic volume of all re-
gions at the future time step t+ 1, i.e., Xt+1 ∈ RN×2.

3 Methodology
This section elaborates on the technical details of our ST-
SSL model with the overall architecture shown in Fig. 2.

3.1 Spatio-Temporal Encoder
We firstly propose a spatio-temporal (ST) encoder to jointly
preserve the ST contextual information over the traffic flow
graph, so as to jointly model the sequential patterns of traffic
data across different time steps and the geographical correla-
tions among spatial regions. Towards this end, we integrate
the temporal convolutional component with the graph con-
volutional propagation network as the backbone for spatial-
temporal relational representation.

For encoding the temporal traffic patterns, we adopt the 1-
D causal convolution along the time dimension with a gated
mechanism (Yu, Yin, and Zhu 2018). Specifically, our tem-
poral convolution (TC) takes the traffic flow tensor as the
input and outputs a time-aware embedding for each region:

(Bt−Tout , . . . ,Bt) = TC (Xt−T , . . . ,Xt) , (1)

where Bt ∈ RN×D denotes the region embedding matrix
at the time step t. The n-th row bt,n ∈ RD corresponds to
the embedding of region rn. Here, D denotes the embedding
dimensionality. Tout is the length of the output embedding
sequence after convolutional operations in TC encoder.

For capturing the region-wise spatial correlations, we de-
sign our spatial convolution (SC) encoder based on a graph-
based message passing mechanism presented as follows:

Et = SC (Bt,A) . (2)

A is the region adjacency matrix of G. After our SC encoder,
we can obtain the refined embeddings (Et−Tout

, . . . ,Et) of
all regions by injecting the geographical context.

Our ST encoder is built with a “sandwich” block structure,
in which TC → SC → TC is each individual block. By stack-
ing multiple blocks, we can obtain a sequence of embedding
matrix (Ht−T ′ , . . . ,Ht) with the temporal dimension of T ′

after several convolutions. After ST encoder-based embed-
ding propagation and aggregation, the temporal dimension
T ′ reduces to zero and we generate the final embedding ma-
trix H ∈ RN×D for our ST encoder, in which each row
hn ∈ RD denotes the final embedding of region rn.

In the next subsection, we will perform the adaptive aug-
mentation over the (Bt−T , . . . ,Bt) output from the first TC
encoder layer (Sec 3.2), and self-supervised learning with
the spatial-temporal heterogeneity modeling based on the fi-
nal region embedding matrix H (Sec 3.3-Sec 3.4).
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Figure 2: (a): The overall architecture of ST-SSL. (b): Spatial heterogeneity modeling. (c): Temporal heterogeneity modeling.

3.2 Adaptive Graph Augmentation on TFG
We devise two phases of graph augmentation schemes on
TFG G = (V, E ,A,Xt−T :t) with traffic-level data aug-
mentation and graph topology-level structure augmentation,
which is adaptive to the learned heterogeneity-aware region
dependencies in terms of their traffic regularities.

Region-wise Heterogeneity Measurement. For a region
rn, its embedding sequence (bt−T,n, . . . , bt,n) within T
time steps from rows of (Bt−T , . . . ,Bt) is used to gener-
ate an overall embedding as:

un =

t∑
τ=t−T

pτ,n · bτ,n, where pτ,n = b⊤τ,n ·w0. (3)

un is the aggregated representation over region rn’s em-
bedding sequence across different time steps based on the
derived aggregation weight pτ,n. Here, τ is the index of
the time step range (t − T, t). The aggregation weight pτ,n
reflects the relevance between the time step-specific traffic
pattern (bτ,n) and the overall traffic transitional regulari-
ties (un). bτ,n is region rn’s embedding at time step τ and
w0 ∈ RD is a learnable parameter vector for transformation.

In our ST-SSL model, we propose to estimate the hetero-
geneity degree between two regions, to be reflective of their
traffic distribution difference over time below:

qm,n =
u⊤

mun

∥um∥∥un∥
. (4)

Note that a larger qm,n score indicates the higher traffic pat-
tern dependencies between region rm and rn, thus resulting
in the lower heterogeneity degree.

Heterogeneity-guided Data Augmentation. In our ST-
SSL, we propose to perform data augmentation from both
the traffic-level and graph topology-level elaborated below:
Traffic-level Augmentation. Inspired by the data augmen-
tation strategy in (Zhu et al. 2021), we design an augmen-
tation operator over the constructed traffic tensor Xt−T :t,
which is adaptive to the learned time-aware traffic pattern
dependencies of each region. In particular, we aim to mask
less relevant traffic volume at τ -th time step of region rn
against noise perturbation, based on a derived mask prob-
ability ρτ,n draw from a Bernoulli distribution i.e., ρτ,n ∼
Bern(1− pτ,n). The higher ρτ,n value indicates that region
rn’s traffic volume xτ,n at τ -th time step is more likely to be

masked, due to its lower relevance to the overall traffic reg-
ularities of region rn. The augmented data with the traffic-
level augmentation is denoted as X̃t−T :t.
Graph Topology-level Augmentation. In addition to the
traffic-level augmentation, we propose to further perform
the topology-level augmentation over the region traffic flow
graph G. By doing so, ST-SSL can not only debias the re-
gion connections with low inter-correlated traffic patterns,
but also capture the long-range region dependencies with
the global urban context. Towards this end, i) Given two
spatially adjacent regions rm and rn, their connection edge
(rm, rn) ∈ E will be masked if they are not highly de-
pendent in terms of their traffic regularities, measured by
the high heterogeneity degree qm,n. The mask probability
ρm,n is drawn from a Bernoulli distribution i.e., ρm,n ∼
Bern(1−qm,n). ii) Given two non-adjacent regions, the low
heterogeneity degree qm,n will result in adding an edge be-
tween rm and rn based on the masking probability drawn
from a Bernoulli distribution, Bern(qm,n) similarly.

After two augmentation phases, we obtain the augmented
TFG G̃ =

(
V, Ẽ , Ã, X̃t−T :t

)
, with the debiased traffic vol-

ume input X̃t−T :t (traffic-level augmentation) and structure
denoising Ẽ , Ã (graph topology-level augmentation).

3.3 SSL for Spatial Heterogeneity Modeling
Given the heterogeneity-aware augmented TFG, we aim to
enable the region embeddings to effectively preserve the
spatial heterogeneity with auxiliary self-supervised signals.

To achieve this goal, we design a soft clustering-based
self-supervised learning (SSL) task over regions, to map
them into multiple latent representation spaces correspond-
ing to diverse urban region functionalities (e.g., residential
zone, shopping mall, transportation hub). Specifically, we
generate K cluster embeddings {c1, . . . , cK} (indexed by
k) as latent factors for region clustering. Formally, the clus-
tering process is performed with z̃n,k = c⊤k h̃n. Here, h̃n ∈
RD is the region embedding of region rn encoded from the
augmented TFG G̃. z̃n,k represents the estimated relevance
score between region rn’s embedding and the embedding ck
of the k-th cluster. Afterwards, the cluster assignment of re-
gion rn is generated with z̃n = (z̃n,1, . . . , z̃n,K)⊤.

To provide self-supervised signals based on the
heterogeneity-aware soft clustering paradigm for aug-
mentation, the auxiliary learning task is designed to predict



the cluster assignment using the region embedding hn

encoded from the original TFG G as: ẑn,k = c⊤k hn,
where ẑn,k is the predicted assignment score for z̃n,k. The
self-supervised augmented task is optimized as follows:

ℓ(hn, z̃n) = −
∑
k

z̃n,k log
exp (ẑn,k/γ)∑
j exp (ẑn,j/γ)

, (5)

where γ is the temperature parameter to control the smooth-
ing degree of softmax output. The overall self-supervised
objective over all regions is defined as follows:

Ls =

N∑
n=1

ℓ(hn, z̃n). (6)

By incorporating the supervision on hn with the
heterogeneity-aware region cluster assignment z̃n, we make
the region embedding hn to be reflective of spatial hetero-
geneity within the global urban space.
Distribution Regularization for Region Clustering. In our
heterogeneity-aware region clustering paradigm, we gener-
ate the cluster assignment matrix Z̃ = (z̃1, . . . , z̃N )⊤ ∈
RN×K as self-supervised signals for generative data aug-
mentation. However, two issues need to be addressed to
fit the true distribution of regional characteristics in urban
space: i) Since Z̃ is produced by matrix production, there is
no guarantee that each region’s cluster assignment sums up
to 1, i.e., Z̃1K = 1N , where 1N denotes an N -dimensional
vector of all ones. ii) To avoid the trivial solution that every
region has the same assignment, we employ the principle
of maximum entropy, i.e., Z̃⊤1N = N

K1K . This encourages
all regions to be equally partitioned by the clusters. To tackle
these two issues, we define a feasible solution set as:

Z̃ =

{
Z̃ ∈ RN×K

+

∣∣∣∣Z̃1K = 1N , Z̃⊤1N =
N

K
1K

}
. (7)

For any assignment Z̃ ∈ Z̃ , we can use it to map the em-
bedding matrix H̃ = (h̃1, . . . , h̃N )⊤ ∈ RN×D into the
cluster matrix C = (c1, . . . , cK)⊤ ∈ RK×D. Thus, we
search for the optimal solution by maximizing the similar-
ity between the embeddings and the clusters, i.e.,

max
Z̃∈Z

tr
(
Z̃CH̃⊤

)
+ ϵH(Z̃), (8)

where tr(·) is the trace operator that sums elements on the
main diagonal of a square matrix, H(Z̃) is the entropy func-
tion defined as −

∑
n,k z̃n,k log z̃n,k, and ϵ is a parameter

that controls the smoothness of the assignment. Finally, the
original assignment in Eq. (6) is replaced with the optimal
solution. Refer to the Appendix for the solution procedure.

3.4 SSL for Temporal Heterogeneity Modeling
In this component, we further design a self-supervised learn-
ing (SSL) task to inject the temporal heterogeneity into
time-aware region embeddings, by enforcing the divergence
among time step-specific traffic pattern representations.

Specifically, we firstly fuse the encoded time-aware re-
gion embeddings from both the original and augmented
TFGs:

vt,n = w1 ⊙ ht,n +w2 ⊙ h̃t,n, (9)

where ⊙ is the element-wise product. w1,w2 are learnable
parameters. After that, we generate the city-level represen-
tation st at the time step t through aggregating embeddings
of all regions (σ is the sigmoid function):

st = σ

(
1

N

N∑
n=1

vt,n

)
. (10)

To enhance the representation discrimination ability
among different time steps, we treat the region-level and
city-level embeddings (vt,n, st) from the same time step
as the positive pairs in our SSL task, and the embeddings
from different time steps as negative pairs. With this design,
the auxiliary supervision of positive pairs will encourage
the consistency of time-specific citywide traffic trends (e.g.,
rush hours, weather factors), while the negative pairs help in
capturing the temporal heterogeneity across different time
steps. Formally, the temporal heterogeneity-enhanced SSL
task is optimized with the following loss with cross-entropy
metric:

Lt = −

(
N∑

n=1

log g (vt,n, st) +

N∑
n=1

log (1− g (vt′,n, st))

)
,

(11)
where t and t′ denote two different time steps. g is a cri-
terion function defined as g (vt,n, st) = σ

(
v⊤
t,nW3st

)
.

W3 ∈ RN×N is the learnable transformation matrix.

3.5 Model Training
In the learning process of our ST-SSL, we feed the embed-
ding hn ∈ H of each region rn into an MLP structure to
enable the traffic flow prediction at the future time step t+1
as:

x̂t+1,n = MLP(hn), (12)
where x̂t+1,n is the predicted result. The model is optimized
by minimizing the loss function below:

Lp =

N∑
n=1

λ
∣∣∣x(0)

t+1,n − x̂
(0)
t+1,n

∣∣∣+ (1− λ)
∣∣∣x(1)

t+1,n − x̂
(1)
t+1,n

∣∣∣ ,
(13)

where x
(0)
t+1,n, x

(1)
t+1,n denote the ground truth of inflow and

outflow respectively. λ is a parameter to balance the influ-
ence of each type of traffic flow.

Finally, we obtain the overall loss by incorporating the
self-supervised spatial and temporal heterogeneity modeling
losses in Eq. (6) and (11) into the joint learning objective:

Ljoint = Lp + Ls + Lt. (14)

Our model can be trained via the back-propagation algo-
rithm. The entire training procedure can be summarized into
four stages: i) given a TFG G, we generate a region em-
bedding matrix H by the ST encoder. ii) Meanwhile, we
perform adaptive augmentation to refine G as G̃, which is
fed into the shared ST encoder to output H̃ . iii) By us-
ing H and H̃ , we calculate the losses Ls, Lt, and Lp that
are used to produce the joint loss Ljoint. iv). We employ
the back-propagation algorithm to train ST-SSL until Ljoint

converges.



4 Experiments
In this section, we evaluate the performance of ST-SSL on a
series of experiments over several real-world datasets, which
are summarized to answer the following research questions:
• RQ1: How is the overall traffic prediction performance of
ST-SSL as compared to various baselines?
• RQ2: How do designed different sub-modules contribute
to the model performance?
• RQ3: How does ST-SSL perform with regard to heteroge-
neous spatial regions and different time periods?
• RQ4: How do the augmented graph and learned represen-
tations benefit the model?

4.1 Experimental Settings
Data Description. We evaluate our model on two types of
public real-world traffic datasets summarized in Tab. 1.

The first kind is about bike rental records in New York
City. NYCBike1 (Zhang, Zheng, and Qi 2017) spans from
04/01/2014 to 09/30/2014, and NYCBike2 (Yao et al. 2019)
spans from 07/01/2016 to 08/29/2016. They are all mea-
sured every 30 minutes. The second kind is about taxi
GPS trajectories. NYCTaxi (Yao et al. 2019) spans from
01/01/2015 to 03/01/2015. Its time interval is half an hour.
BJTaxi (Zhang, Zheng, and Qi 2017), collected in Beijing,
spans from 03/01/2015 to 06/30/2015 on an hourly basis.

For all datasets, previous 2-hour flows as well as previous
3-day flows around the predicted time are used to predict
the flows for the next time step. We use a sliding window
strategy to generate samples, and then split each dataset into
the training, validation, and test sets with a ratio of 7:1:2.

Evaluation Metrics & Baselines. In our experiments, two
common metrics are used for evaluation: Mean Average Er-
ror (MAE) and Mean Average Percentage Error (MAPE).
We compare our proposed ST-SSL with 8 baselines that fall
into three categories.
Traditional Time Series Prediction Approaches:
• ARIMA (Kumar and Vanajakshi 2015): it is a classical
time series prediction model.
• SVR (Castro-Neto et al. 2009): it is a regression model
widely used for time series analysis.
Spatial-Temporal Traffic Prediction Methods:
• ST-ResNet (Zhang, Zheng, and Qi 2017): it is a
convolution-based model that constructs multiple traffic
time series to capture the temporal dependencies and utilizes
residual convolution to model the spatial correlations.
• STGCN (Yu, Yin, and Zhu 2018): it is a graph
convolution-based model that combines 1D convolution to
capture spatial and temporal correlations, respectively.
• GMAN (Zheng et al. 2020): it is an attention-based pre-
dictive model that adopts an encoder-decoder architecture.
Spatial-Temporal Methods Considering Heterogeneity:
• AGCRN (Bai et al. 2020): it enhances the traditional graph
convolution by adaptive modules and combines them into re-
current networks to capture spatial-temporal correlations.
• STSGCN (Song et al. 2020): it captures the complex local-
ized spatial-temporal correlations through a spatial-temporal
synchronous modeling mechanism.

Data type Bike rental Taxi GPS

Dataset NYCBike1 NYCBike2 NYCTaxi BJTaxi
Time interval 1 hour 30 min 30 min 30 min

# regions 16×8 10×20 10×20 32×32
# taxis/bikes 6.8k+ 2.6m+ 22m+ 34k+

Table 1: Statistics of Datasets.
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Figure 3: Visualization of traffic prediction errors.

• STFGNN (Li and Zhu 2021): it integrates with STFGN
module and a novel gated CNN module, and captures hidden
spatial dependencies by a data-driven graph and its further
fusion with given spatial graphs.

Methods in the last category model the traffic heterogene-
ity by using multiple parameter spaces.

Parameter Settings. The ST-SSL is implemented with
PyTorch. The embedding dimension D is set as 64. Both
the temporal and spatial convolution kernel sizes of ST en-
coder are set to 3. The perturbation ratios for both traffic-
level and topology-level augmentations are set as 0.1. The
training phase is performed using the Adam optimizer and
the batch size of 32. The experiments of baseline evalua-
tion are conducted with their released codes on the LibC-
ity (Wang et al. 2021) platform.

4.2 Performance Comparison (RQ1)
Table 2 shows the comparison results of all methods. We run
all deep learning models with 5 different seeds and report the
average performance and their standard deviations.

Performance Superiority of ST-SSL. According to Stu-
dent’s t-test at level 0.01, our ST-SSL significantly outper-
forms other competing baselines with regard to both met-
rics over all datasets. This demonstrates the effectiveness of
ST-SSL in jointly modeling the spatial and temporal hetero-
geneity in a self-supervised manner. Fig. 3 visualizes the
prediction error (|x̂n − xn|/xn) of ST-SSL and two best
performed baselines on BJTaxi dataset, where a brighter
pixel means a larger error. The superiority of our model can
still be observed, which is consistent with the quantitative
results in Table 2. Interestingly, ST-SSL exhibits a signif-
icant improvement in the suburban areas (green boxes in
Fig. 3), which justifies the effectiveness of spatial hetero-
geneity modeling that transfers information among global
similar regions.

Performance Comparison between Baselines. Spatio-
temporal prediction methods outperform time series ap-
proaches in most cases, which suggests the necessity to cap-
ture spatial dependencies. The methods that take into ac-
count the heterogeneity of traffic data usually perform bet-



Dataset Metric Type ARIMA SVR ST-ResNet STGCN GMAN AGCRN STSGCN STFGNN ST-SSL

NYCBike1
MAE In 10.66 7.27 5.53±0.06 5.33±0.02 6.77±3.42 5.17±0.03 5.81±0.04 6.53±0.10 4.94±0.02

Out 11.33 7.98 5.74±0.07 5.59±0.03 7.17±3.61 5.47±0.03 6.10±0.04 6.79±0.08 5.26±0.02

MAPE In 33.05 25.39 25.46±0.20 26.92±0.08 31.72±12.29 25.59±0.22 26.51±0.32 32.14±0.23 23.69±0.11
Out 35.03 27.42 26.36±0.50 27.69±0.14 34.74±17.04 26.63±0.30 27.56±0.39 32.88±0.19 24.60±0.27

NYCBike2
MAE In 8.91 12.82 5.63±0.14 5.21±0.02 5.24±0.13 5.18±0.03 5.25±0.03 5.80±0.10 5.04±0.03

Out 8.70 11.48 5.26±0.08 4.92±0.02 4.97±0.14 4.79±0.04 4.94±0.05 5.51±0.11 4.71±0.02

MAPE In 28.86 46.52 32.17±0.85 27.73±0.16 27.38±1.13 27.14±0.14 29.26±0.13 30.73±0.49 22.54±0.10
Out 28.22 41.91 30.48±0.86 26.83±0.21 26.75±1.14 26.17±0.22 28.02±0.23 29.98±0.46 21.17±0.13

NYCTaxi
MAE In 20.86 52.16 13.48±0.14 13.12±0.04 15.09±0.61 12.13±0.11 13.69±0.11 16.25±0.38 11.99±0.12

Out 16.80 41.71 10.78±0.25 10.35±0.03 12.06±0.39 9.87±0.04 10.75±0.17 12.47±0.25 9.78±0.09

MAPE In 21.49 65.10 24.83±0.55 21.01±0.18 22.73±1.20 18.78±0.04 22.91±0.44 24.01±0.30 16.38±0.10
Out 21.23 64.06 24.42±0.52 20.78±0.16 21.97±0.86 18.41±0.21 22.37±0.16 23.28±0.47 16.86±0.23

BJTaxi
MAE In 21.48 52.77 12.12±0.11 12.34±0.09 13.13±0.43 12.30±0.06 12.72±0.03 13.83±0.04 11.31±0.03

Out 21.60 52.74 12.16±0.12 12.41±0.08 13.20±0.43 12.38±0.06 12.79±0.03 13.89±0.04 11.40±0.02

MAPE In 23.12 65.51 15.50±0.26 16.66±0.21 18.67±0.99 15.61±0.15 17.22±0.17 19.29±0.07 15.03±0.13
Out 20.67 65.51 15.57±0.26 16.76±0.22 18.84±1.04 15.75±0.15 17.35±0.17 19.41±0.07 15.19±0.15

Table 2: Model comparison on four datasets in terms of MAE and MAPE (%). In and Out represent the inflow and outflow.
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Figure 4: Ablation study of our proposed ST-SSL.

ter than those that use shared parameters across different re-
gions and time periods, indicating the rationality of learning
spatial and temporal heterogeneity in traffic prediction.

4.3 Ablation Study (RQ2)
To analyze the effects of sub-modules in our ST-SSL frame-
work, we perform ablation studies with five variants:
• ST-SSL-sa: This variant replaces heterogeneity-guided
structure augmentation on graph topology with random edge
removal and addition augmentations.
• ST-SSL-ta: This variant replaces heterogeneity-guided
traffic-level augmentation with random traffic volume mask-
ing augmentations.
• ST-SSL-sh: This variant which disables spatial
heterogeneity modeling in the joint framework.
• ST-SSL-th: This variant which disables temporal
heterogeneity modeling in the joint framework.

The results are presented in Fig. 4. We can observe that
ST-SSL beats the variants with random augmentation, in-
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Figure 5: Prediction performance with regard to heteroge-
neous spatial regions and different time periods.

dicating the effectiveness of our adaptive heterogeneity-
guided data augmentation at both traffic-level and graph
structure-level. Moreover, ST-SSL consistently outperforms
ST-SSL-sh and ST-SSL-th, which justifies the necessity to
jointly model the spatial and temporal heterogeneity. In sum-
mary, each designed sub-module has a positive effect on per-
formance improvement.

4.4 Robustness Analysis (RQ3)
To explore the robustness of our ST-SSL, we perform traffic
prediction for spatial regions with heterogeneous data distri-
butions and time periods with different patterns on BJTaxi.
Specifically, we cluster regions by using traffic data statis-
tics, i.e., (mean,median, standard deviation) of their
historical traffic flow. As shown in Fig. 5(a), regions with
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Figure 6: Case study on the adaptive graph augmentation.

smaller cluster id (next to the color bar) are usually located
in suburbs that are less popular and thus have lower traffic.
Fig. 5(b) exhibits the prediction performance for different
clusters. Our ST-SSL surpasses other baselines by a signifi-
cant margin, particularly for less popular regions (marked by
black circles), which is consistent with results in Fig. 3. This
also verifies the robustness of ST-SSL to accurately predicts
traffic flows of different types of spatial regions.

For temporal heterogeneity, according to urban traffic
rhythms (Wang et al. 2019a), we partition a workday into
four time periods and a holiday (weekend included) into
two time periods, whose categories are given in Fig. 5(c).
Fig. 5(d) presents the evaluation performance. Our ST-SSL
beats the baselines in terms of every category. Furthermore,
ST-SSL shows a significant improvement in categories 3 and
5 that denote the nighttime of workdays and holidays. Dur-
ing these times, traffic flow data are typically sparse, making
it difficult for baselines to produce accurate predictions. ST-
SSL can handle this situation because we inject the temporal
heterogeneity into the time-aware region embeddings.

4.5 Qualitative Study (RQ4)

In Fig. 6, we investigate the heterogeneity-guided graph
topology-level augmentation on BJTaxi. Our augmenta-
tion method adaptively removes connections between adja-
cent regions with heterogeneous traffic patterns, i.e., Zuoji-
azhuang Residential Zone and Sanyuan Bridge (a transporta-
tion hub). Meanwhile, it builds connections between dis-
tant regions with similar latent urban function, e.g., Xizhi-
men Bridge and Sanyuan Bridge that are both transportation
hubs. In this way, our ST-SSL can not only debias the re-
gion connections with low inter-correlated traffic patterns,
but also capture the long-range region dependencies with the
global urban context.

To further explore why the embeddings obtained by
ST-SSL can deliver more accurate traffic prediction than
AGCRN, we visualize them on BJTaxi by t-SNE (Van der
Maaten and Hinton 2008). We plot the learned embeddings
of all regions with ground truth classes the same as Fig. 5(a).
As shown in Fig. 7, samples in the same class are more com-
pact and those of different classes are significantly better
separated for ST-SSL. This enables ST-SSL to be aware of
spatial heterogeneity and transfer information between re-
gions in the same class, which facilitates predictions.
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Figure 7: t-SNE visualization of embeddings on BJTaxi.

5 Related Work
Deep Learning for Traffic Prediction. Many efforts have
been devoted to developing traffic prediction techniques
based on various neural networks. RNN (Wang et al. 2019b;
Ji et al. 2020) and 1D CNN (Wang et al. 2022, 2016)
are applied to capture the temporal dependencies in traf-
fic series. CNN (Zhang, Zheng, and Qi 2017; Yao et al.
2019), GNN (Zhang et al. 2020; Ji et al. 2022), and atten-
tion mechanism (Zheng et al. 2020) are introduced to incor-
porate the spatial information. However, most of them ne-
glect the spatio-temporal heterogeneity problem. Recently,
some works model the heterogeneity by using multiple mod-
els (Yuan, Zhou, and Yang 2018) or multiple sets of param-
eters (Bai et al. 2020; Li and Zhu 2021), and some use meta
learning to generate different weights based on static fea-
tures of different regions (Pan et al. 2019a; Ye et al. 2022).
However, these methods either introduce a number of pa-
rameters that may cause an overfitting problem or require ex-
ternal data that may be not available. To overcome these lim-
itations, we incorporate self-supervised learning into traffic
prediction to explore spatial and temporal heterogeneity.

Self-Supervised Learning for Representation Learning.
Self-supervised learning aims to extract useful informa-
tion from input data to improve the representation qual-
ity (Hendrycks et al. 2019). The general paradigm is to aug-
ment the input data and then design pretext tasks as pseudo-
labels for representation learning. It has achieved great suc-
cess with text (Kenton and Toutanova 2019), image (Chen
et al. 2020), and audio data (Oord, Li, and Vinyals 2018).
Motivated by these works, we develop an adaptive data aug-
mentation method for spatio-temporal graph data and intro-
duce two pretext tasks to learn representations that are ro-
bust to spatio-temporal heterogeneity, which has not been
well explored in existing traffic flow prediction methods.

6 Conclusion and Future Work
This work investigated the traffic prediction problem by
proposing a novel spatio-temporal self-supervised learning
(ST-SSL) framework. Specifically, we integrated temporal
and spatial convolutions to encode spatial-temporal traf-
fic patterns. Then, we devised i) a spatial self-supervised
learning paradigm that consists of an adaptive graph aug-
mentation and a clustering-based generative task, and ii) a
temporal self-supervised learning paradigm that relies on a
time-aware contrastive task, to supplement the main traffic
flow prediction task with spatial and temporal heterogeneity-
aware self-supervised signals. Comprehensive experiments
on four traffic flow datasets demonstrated the robustness
of ST-SSL. The future work lies in extending our spatial-
temporal SSL framework to a model-agnostic paradigm.
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